
# ANATOMY, PHYSIOLOGY & PATHOLOGY NOTES OF THE MUSCULOSKELETAL system



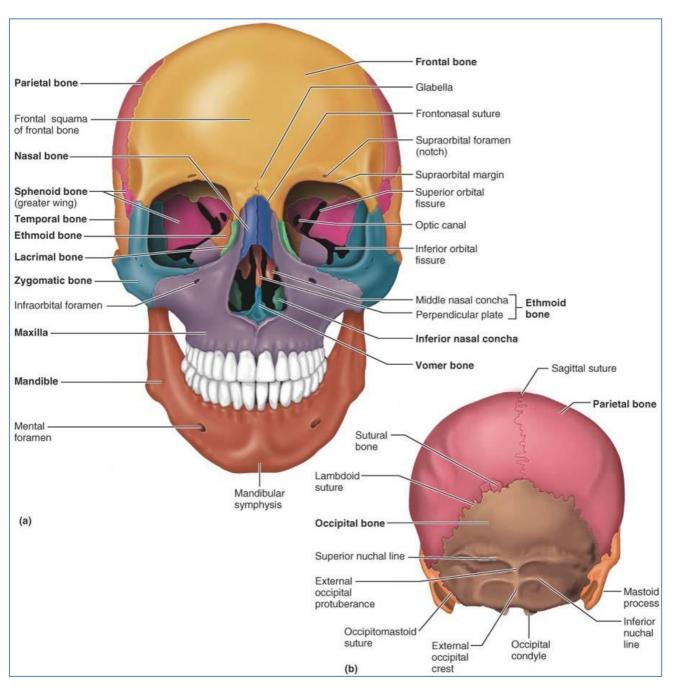


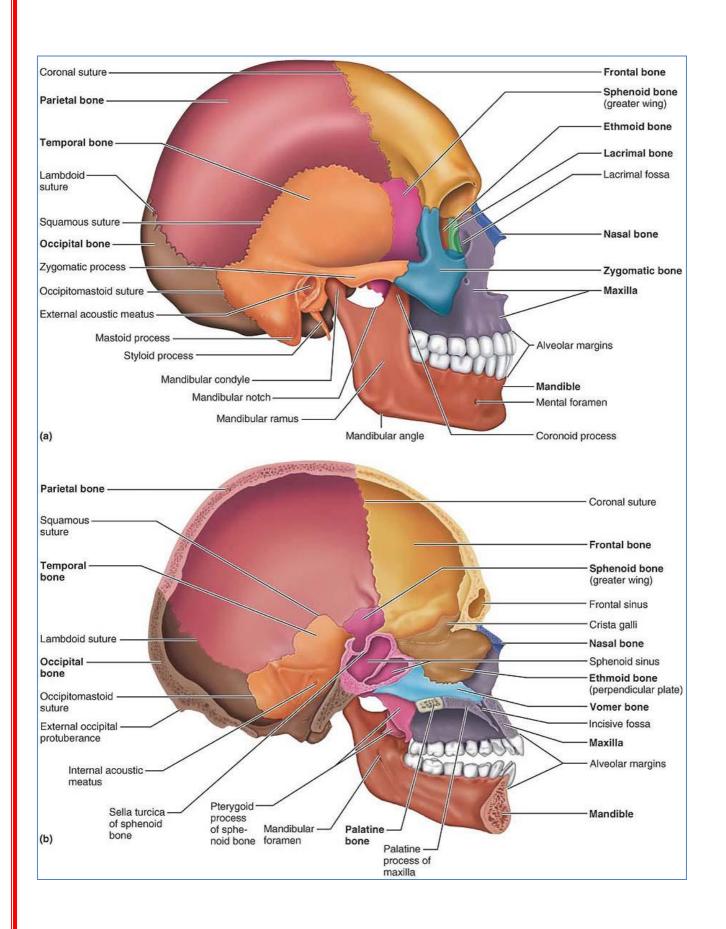
MEDICAL NOTES (MBBS, MD, MBChB, USMLE, PA, & Nursing) Anatomy, Physiology, Pathophysiology, Pathology, Histology & Treatments

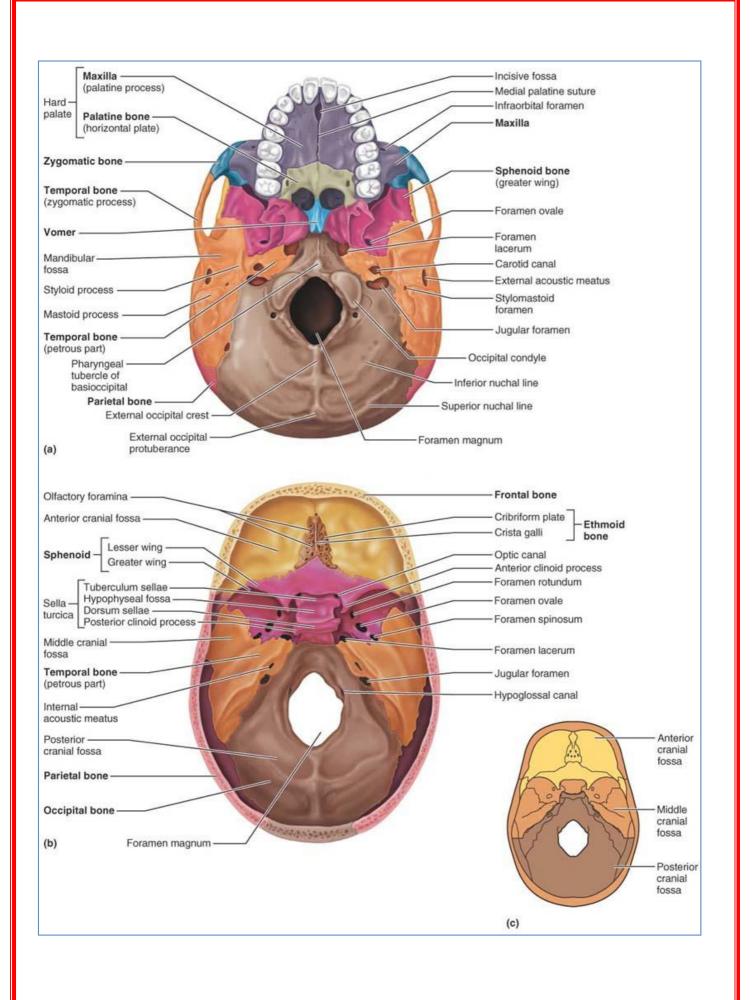
www.regentstudies.com/medicalnotesmbbs

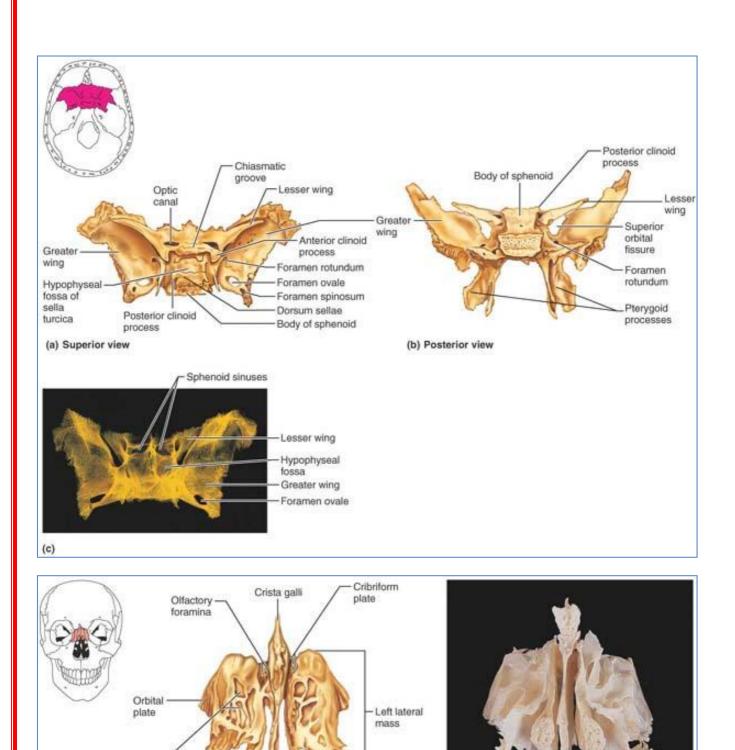
# Table Of Contents:

**What's included:** Ready-to-study anatomy, physiology and pathology notes of the musculoskeletal system presented in succinct, intuitive and richly illustrated downloadable PDF documents. Once downloaded, you may choose to either print and bind them, or make annotations digitally on your iPad or tablet PC.


Free Bonus: 'Orthopedics' chapter of Toronto Notes for reference and further detailed reading.


# File List:


- Bones of the Skull
- Skeletal System Condensed
- Skeletal System In Detail
- Muscle Anatomy & Physiology
- AMuscle Physiology & Contraction
- The Nerve-Muscle Interface
- Review of The Structure of the Nervous System
- Revision of the Nervous System
- Bones & Muscles of the Lower Limb
- Pelvic & Lower Limb Detailed Anatomy
- Shoulder Girdle & Upper Limb Detailed Anatomy
- Bones & Muscles of the Spine
- Bony Injuries (Fractures)
- Bony Tumours
- Crystal Arthropathies
- Fibromyalgia
- Gait & Gait Disturbances
- Musculoskeletal Injury Radiology
- Myositis
- Neurovascular Compromises
- Osteoarthritis
- Osteomyelitis
- Osteoporosis & Pagets Disease
- Polymyalgia Rheumatica
- Rheumatoid Arthritis
- Septic Arthritis
- Seronegative Arthritises
- Q&A Arthritis & Rheumatology Cases & MCQs
- TORONTO Orthopedics Chapter


# **Bones of the Skull**

#### (Need to Know)









Middle

nasal concha

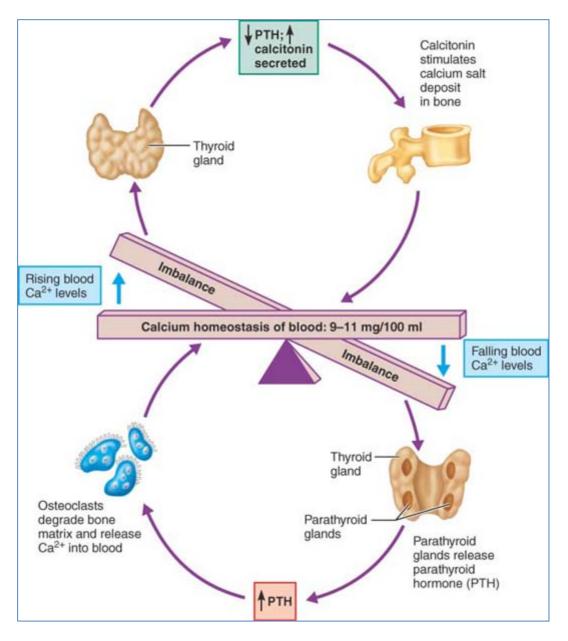
Perpendicular

plate

Ethmoid sinuses

# The Skeletal System:

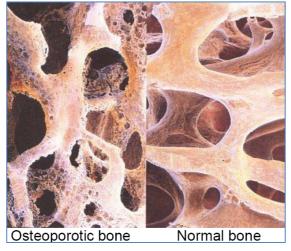
#### Functions:


.

- Support
- Protection
- Movement
- Storage
  - o Minerals
    - Ca<sup>+</sup> used in many processes in body
    - Must be maintained at certain levels in blood.
  - o Marrow

- Haematopoietic stem cells
  - Fat
- Blood Production Haematopoiesis

# Metabolism of bone & its hormonal control


- Calcitonin → Ca<sup>+</sup> salt deposit in bone
- **Parathyroid hormone**  $\rightarrow$  Resorption of Ca<sup>+</sup> from bone by osteoclasts  $\rightarrow$  increases blood Ca<sup>+</sup> levels.
- Estrogen  $\rightarrow$  Restrains Osteoclast activity & Promotes deposition of new bone.



#### **Osteoporosis:**

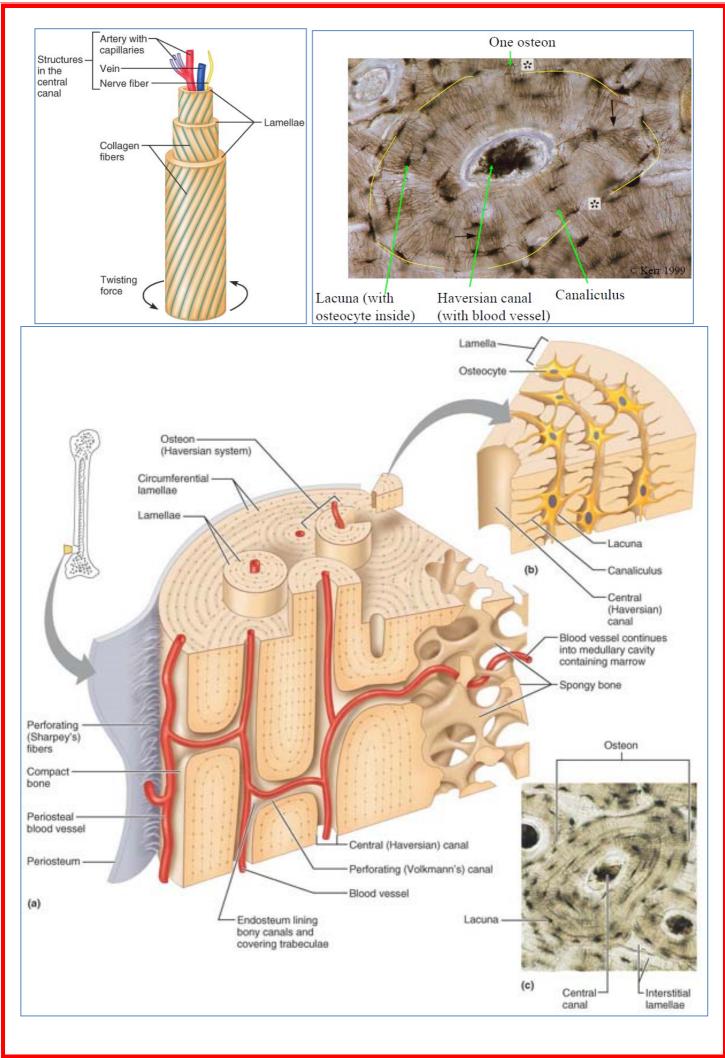
.

- Bone resorption outstrips deposition  $\rightarrow$  bone density decreases risk of fractures increases.
  - Cancellous bone is affected first has a quicker turnover (remodelling rate)
  - o Trabeculae become porous & lighter or even disappear
  - $\circ$  Common in Postmenopausal Women: reduced levels of Estrogen  $\rightarrow$  increased osteoclast activity.



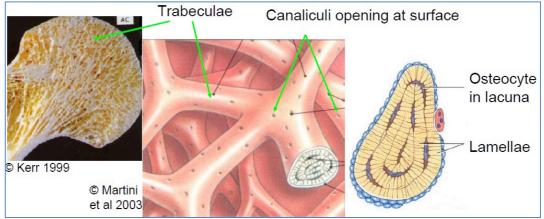
#### **Bone Composition:**

#### Organic


- o Collagen & other proteins
- o **35%**
- o Flexibility
- o Tensile Strength
- Inorganic
  - o Mineral Salts
  - o **65%**
  - o Compression Strength
  - Reason why it preserves so well.

#### **Bone & Associated Tissue Histology:**

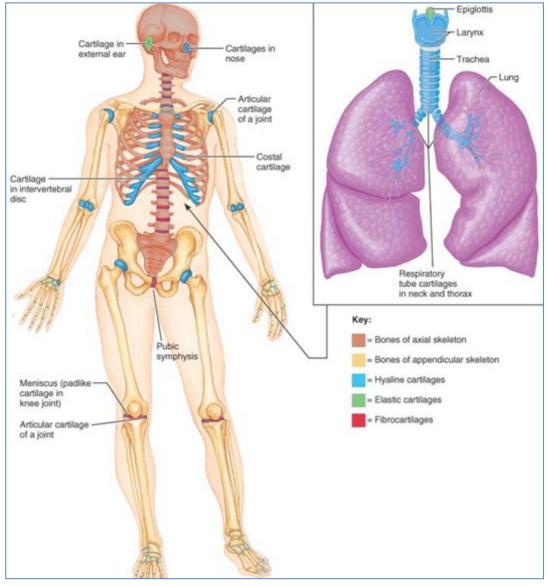
- Bone
  - Compact
    - Thicker
    - Denser


.

- Comprised of Osteons basic <u>units</u> of compact bone
  - Haversian Canal
    - o Blood Vessels
    - o Nerve Fibres
  - Lamellae
    - o Rings of Collagen Fibres around Haversian Canals
    - o Collagen Fibres oppose each other diagonally
    - o Resists torsional stress
  - Lacunae
    - Tiny caverns between the Lamellae
    - Residences of the osteocytes
  - Osteocytes
    - Living cells of bone tissue
    - Maintains health of bone matrix
    - If an osteocyte dies, the surrounding bone matrix is resorbed by osteoclasts.
  - Canaliculi
    - Tiny plasma membrane extensions of the osteocytes
    - o Allows communication between osteocytes
    - o Allows nutrient sharing between osteocytes

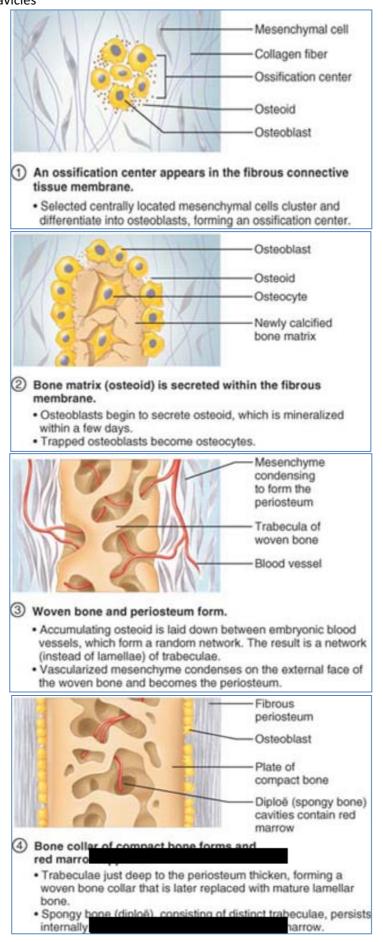


# • Cancellous (Spongy)


- Trabeculae (struts) relay stress to the dense compact bone
  - Houses marrow in between trabeculae.
- Blood Vessels
- Osteoblasts
- Fat Cells

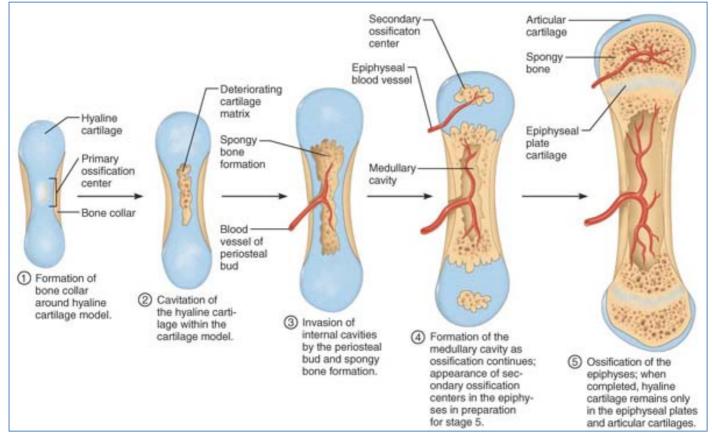


## Cartilage:


#### • Articular (Hyaline)

- Avascular
- Chondrocytes in columns in lacunae
- Ground Substance fibres + H<sub>2</sub>O



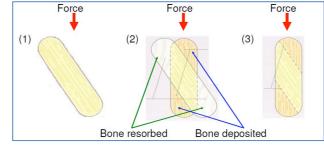

#### **Bone Development:**

- Intramembranous
  - o Ossification Within Membranes
    - Cranial bones of skull
      - Clavicles

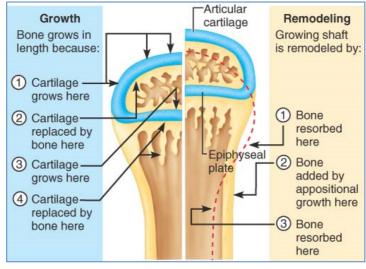


#### • Endochondral

- From Cartilage
  - Hyaline cartilage
  - Primary ossification centre in diaphysis
  - Secondary ossification centre in epiphyses
  - Epiphyseal plate (growth plate)
- o 5 Phases:
  - Phase 1 & 2:
    - In Utero
    - Hyaline cartilage template
    - Osteoblasts begin depositing bone
    - Bone Collar forms around diaphysis
    - Cartilage cells in centre die leaves cavity
    - 1<sup>o</sup> Ossification centre forms
  - Phase 3:
    - In Utero
    - Blood vessels penetrate into centre cavity
    - Fibroblasts enter through blood
    - Fibroblasts convert to osteoblasts
    - Spongy bone forms along shaft
  - Phase 4:
    - At Birth
    - Elongation of diaphysis
    - 2<sup>o</sup> Ossification centre forms in Epiphysis
    - Medullary (Marrow) Cavity forms.
  - Phase 5:
    - Growth & Maturation
    - Complete ossification of Epiphyses
    - Hyaline cartilage remains at:
      - Epiphyseal (growth) plate
        - Articular surface

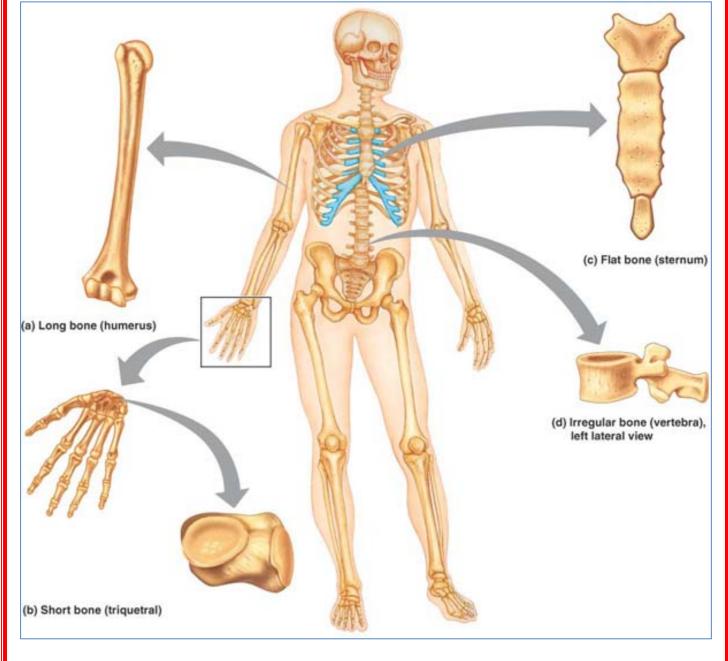



#### **Bone Remodelling:**

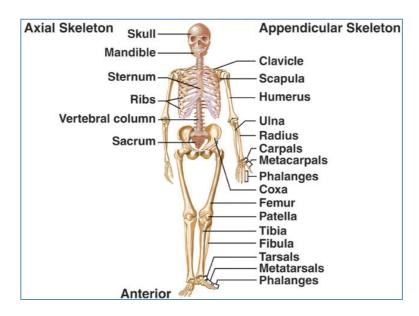

- Bone is living tissue
- Requires blood supply & Constant remodelling
- Bone remodels in response to:
  - o Calcium requirements in body...and
  - o Mechanical Stress
  - Resorption destruction of old bone matter by Osteoclasts:
    - o Large multinucleated cells
    - o Plasma membrane attaches to bone
    - o Forms a seal
    - o Secretes enzymes (collagenase), acid & lysosomes
    - Creates a recess (Howship's Lacunae)
    - o Bone matrix at site gets eroded
    - o Endocytoses digested material
    - o Packages digested material
    - o Exocytoses digested material into extracellular matrix
    - o Material taken away by blood
- Apposition deposition of new bone matter by Osteoblasts:
  - Large Golgi cells of high protein & proteoglycan synthesis
  - o Secrete osteoid (unmineralised organic bone matrix) into lacunae
  - Osteoid + mineralisation = mature bone
  - o **Osteoblasts** trapped in matrix **become osteocytes** when bone formation has ceased.

#### Eg. Bone Remodelling in Response to Stress:

Bone is modelled to more efficiently withstand the force.

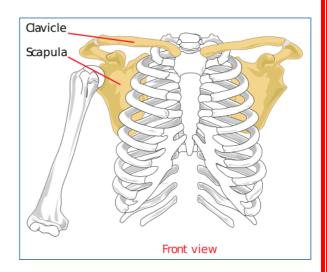



- Eg. Long Bone Growth:
  - Length
    - Apposition at epiphyseal line
    - By osteoblasts
  - Width
    - o Apposition by osteoblasts
    - o Resorption (bone removal) by osteoclasts



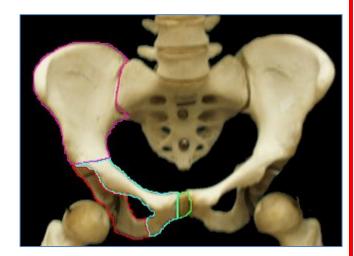

# **Classification of Bones:**

- Long
  - o Humerous
  - o Femur
- Short
  - Carpals
  - o Tarsals
- Flat
  - o Sternum
  - o Scapula
- Irregular
  - o Vertebra
  - Innominate Bones (Ossa Coxae)
- Sesamoid
  - o Patella
  - $\circ$   $\,$  Other bones inside tendons can occur in tendons of the big toe




# Appendicular Vs. Axial Skeleton:




# Pectoral Girdle:

- Scapula & Clavicle
- Anchors upper limbs to axial skeleton



#### Pelvic Girdle:

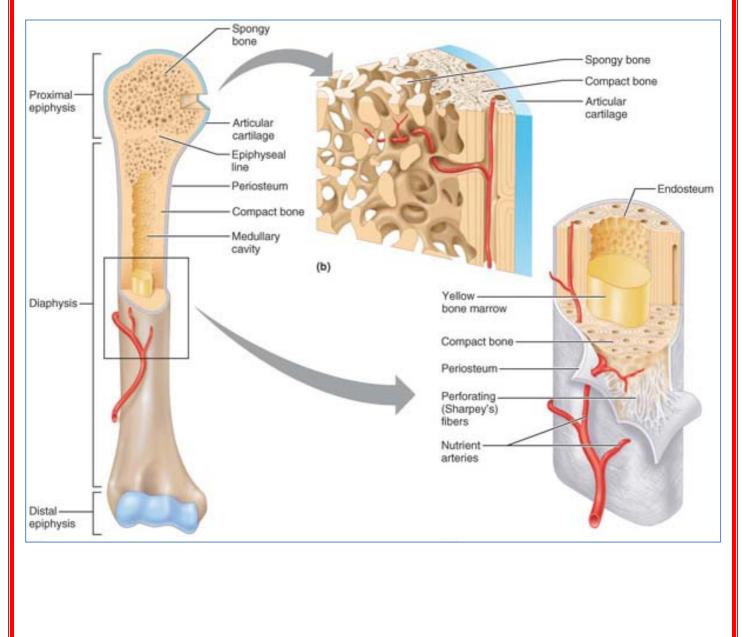
- 2 coxal hip bones: one on each side of sacrum
- Each consists of:
  - o Ilium (pink)
  - o Ischium (red)
  - Pubis (Blue)
    - (pubic symphysis green)
- Collectively known as either:
  - The Ossa Coxae...or
  - o Innominate Bones
- Anchors Lower limbs to Axial Skeleton



# Long Bone Structure:

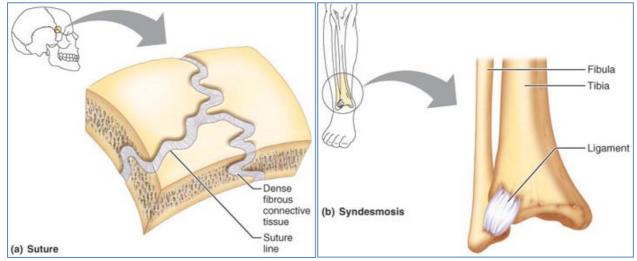
- Diaphysis
  - o Shaft
  - o Hollow
  - Strength + Lightness
  - o Contains marrow (yellow in adult)
- Epiphysis
  - Expanded ends of bones
  - o Proximal & Distal
  - Covered in articular cartilage.
  - Boundary defined by **epiphyseal line.**

# • Medullary (Marrow) Cavity


- o Marrow cavity
- o Red Marrow & Yellow (fatty) marrow
- Site of hematopoesis (blood cell production)
- $\circ \quad \text{Stores fat} \quad$
- Makes bone lighter but still strong.

#### • Periostium

- Connective tissue covering
- Covers all bones
- Fibrous outer
  - Sharpey's fibres
- o Inner
  - Osteoblasts
  - Osteoclasts


# Nutrient Foramen

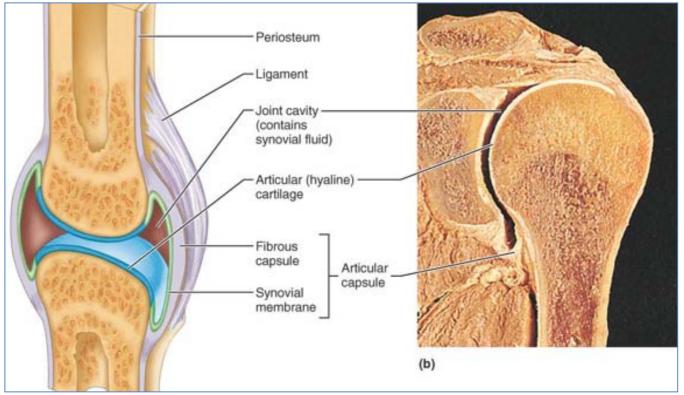
- External opening of the nutrient canal in a bone.
- Provides blood supply
- Arteries & Nerves
- More prevalent towards epiphysis.



# Joints:

- Junction between 2 or more bones
- Not necessarily moving joints (Eg. cranial sutures)
- 3 Types:
  - Fibrous
    - No movement
    - Joined by fibrous tissue
    - No joint cavity
    - Eg. Cranial Sutures
    - Eg. Syndemoses between tibia & fibula @ ankle.




#### o Cartilaginous

- Varying amount of movement
- Joined by cartilage
- No joint cavity
- 2 types:
  - Synchondroses eg. Epiphyseal plates
  - Symphyses eg. Intervertebral joints & pubic symphysis

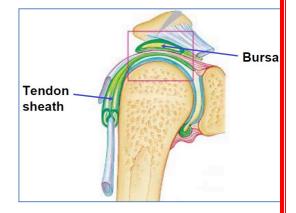


#### • Synovial

- Movement
- Joined by articular capsule
- Where 2 bone-ends meet
- Articular (hyaline) Cartilage
  - Covers bone ends
  - Protects bone prevents bone-bone contact
  - Thin 1mm
  - Resists shock
  - Resilient shape high H<sub>2</sub>O content
  - Avascular nutrients in synovial fluid diffuse to it.
  - Cells = Chondrocytes
  - Ground Substance high H<sub>2</sub>O content
- Synovial fluid
  - Within joint cavity
  - Modified filtrate from blood vessels in synovial membrane
  - Lubricates joint
  - Provides nutrition for cartilage
- Synovial membrane (synovium)
  - Lines everything inside the joint that isn't lined by articular cartilage
- Ligaments & Tendons
  - Fibres Collagen
  - Poorly vascularised

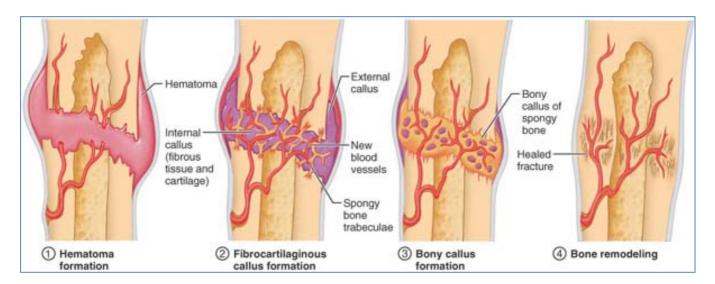


- Types of Synovial Joints:
  - Plane intertarsal joints in hand
  - Hinge elbow/knee
  - Pivot proximal radioulnar joint
  - Saddle carpometacarpal joint of thumb
  - Ball & Socket shoulder/hip
  - Condyloid metacarpophalangeal joints


- Synovial Joint Movements:
  - Gliding
    - Angular
      - Flexion/extension/abduction/adduction/circumduction/plantarflexion/ dorsiflexion
  - Rotation
  - Special
    - Inversion/eversion/supination/pronation/protraction/retraction/elevation/ depression/opposition
- Synovial Joint Stability:
  - Articular surfaces shape
    - Bony congruity
  - Ligaments
    - Capsular
    - o Intracapsular
    - o External
  - Muscle tone
- Movement Limiters:

.

- Shape of bone ends
- Location of ligaments
- Length of ligaments
- Other body surfaces


#### **Bursae and Tendon Sheaths:**

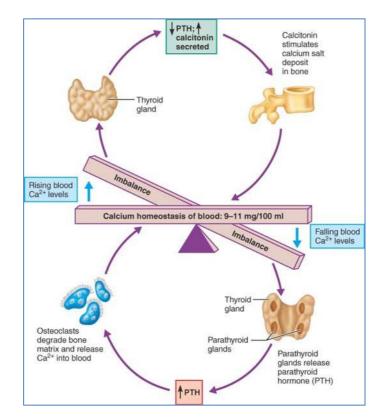
- Found in close association with synovial joints
- 'bags of lubricant'
  - o Lined by synovial membrane
  - o Contain synovial fluid
  - Reduces friction between adjacent structures



#### Bone repair mechanisms

- 1. Hematoma Formation
- 2. Fibrocartilaginous Callus Formation
- 3. Bony Callus Formation
- 4. Bone Remodelling




# System: Skeletal

# Functions:

- Support
- Protection
- Movement
- Storage
  - o Minerals
    - Ca<sup>+</sup> used in many processes in body
    - Must be maintained at certain levels in blood.
  - o Marrow
    - Haematopoietic stem cells
    - Fat
- Blood Production Haematopoiesis

# Metabolism of bone & its hormonal control

- Calcitonin  $\rightarrow$  Ca<sup>+</sup> salt deposit in bone
- **Parathyroid hormone**  $\rightarrow$  Resorption of Ca<sup>+</sup> from bone by osteoclasts  $\rightarrow$  increases blood Ca<sup>+</sup> levels.
- **Estrogen**  $\rightarrow$  Restrains Osteoclast activity & Promotes deposition of new bone.



# **Bone Composition:**

- Organic
  - o Collagen & other proteins
  - o **35%**
  - $\circ$  Flexibility
  - o Tensile Strength
- Inorganic
  - o Mineral Salts
  - o **65%**
  - Compression Strength
  - $\circ$   $\;$  Reason why it preserves so well.

#### Bone & Associated Tissue:

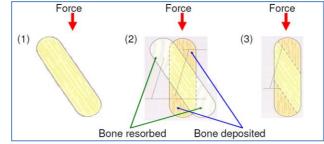
- <u>Bone</u>
  - Compact
    - Thicker
    - Denser
    - Comprised of Osteons basic <u>units</u> of compact bone
    - Cancellous (Spongy)
      - Trabeculae (struts) relay stress to the dense compact bone
      - Houses marrow in between trabeculae.
      - Blood Vessels

# <u>Cartilage:</u>

- Articular (Hyaline)
  - Avascular
  - Ground Substance fibres + H<sub>2</sub>O

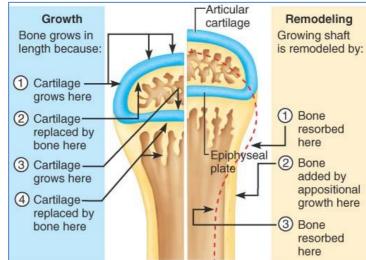
## **Bone Development:**

## • Intramembranous

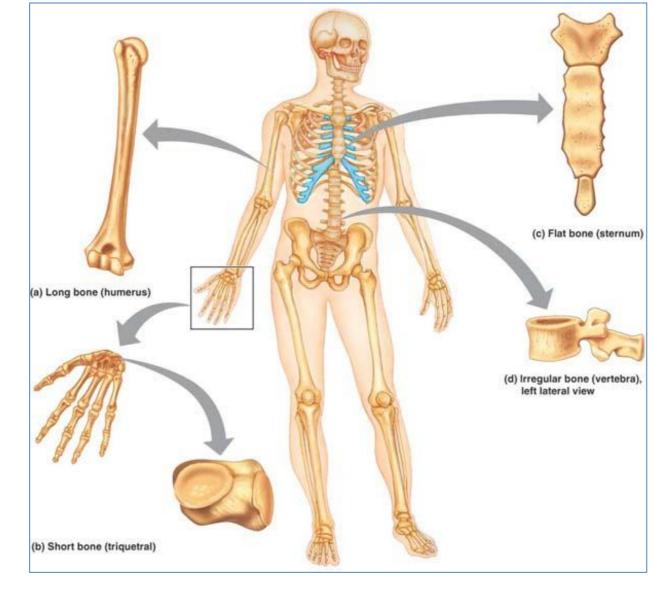

- o Ossification Within Membranes
  - Cranial bones of skull
  - Clavicles
- Endochondral
  - From Cartilage
    - Hyaline cartilage
    - Primary ossification centre in diaphysis
    - Secondary ossification centre in epiphyses
    - Epiphyseal plate (growth plate)

#### **Bone Remodelling:**

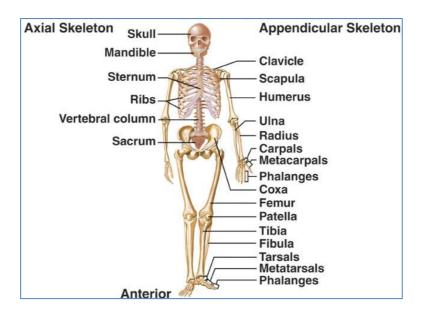
- Bone is living tissue
- Requires blood supply & Constant remodelling
- Bone remodels in response to:
  - o Calcium requirements in body...and
  - Mechanical Stress
- Resorption destruction of old bone matter by Osteoclasts:
  - o Large multinucleated cells
  - o Plasma membrane attaches to bone
  - o Forms a seal
  - o Secretes enzymes (collagenase), acid & lysosomes
- Apposition deposition of new bone matter by Osteoblasts:
  - Large Golgi cells of high protein & proteoglycan synthesis
  - o Secrete osteoid (unmineralised organic bone matrix) into lacunae
  - Osteoid + mineralisation = mature bone
  - **Osteoblasts** trapped in matrix **become osteocytes** when bone formation has ceased.


# Eg. Bone Remodelling in Response to Stress:

Bone is modelled to more efficiently withstand the force.




# • Eg. Long Bone Growth:


- Length
  - Apposition at epiphyseal line
  - By osteoblasts
- Width
  - Apposition by osteoblasts
  - o Resorption (bone removal) by osteoclasts



#### **Classification of Bones:**

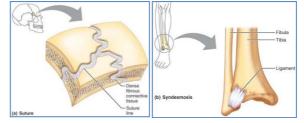


# Appendicular Vs. Axial Skeleton:



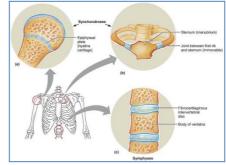
## Long Bone Structure:

## Diaphysis


- o Shaft
- $\circ$  Hollow
- Strength + Lightness
- Contains marrow (yellow in adult)
- Epiphysis
  - Expanded ends of bones
  - Proximal & Distal
  - Covered in **articular cartilage.**
  - Boundary defined by **epiphyseal line.**

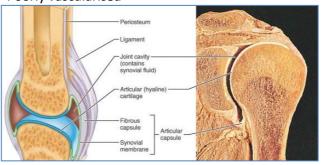
#### • Medullary (Marrow) Cavity

- o Marrow cavity
- o Red Marrow & Yellow (fatty) marrow
- Site of hematopoesis (blood cell production)
- $\circ \quad \text{Stores fat} \quad$
- Makes bone lighter but still strong.
- Periostium
  - o Connective tissue covering
  - o Covers all bones
  - Fibrous outer
    - Sharpey's fibres
  - o Inner
    - Osteoblasts
    - Osteoclasts
- Nutrient Foramen
  - External opening of the nutrient canal in a bone.
  - Provides blood supply
  - Arteries & Nerves
  - $\circ \quad \text{More prevalent towards epiphysis.}$


#### Joints:

- Junction between 2 or more bones
- Not necessarily moving joints (Eg. cranial sutures)
- 3 Types:
  - Fibrous
    - No movement
    - Joined by fibrous tissue
    - No joint cavity
    - Eg. Cranial Sutures
    - Eg. Syndemoses between tibia & fibula @ ankle.

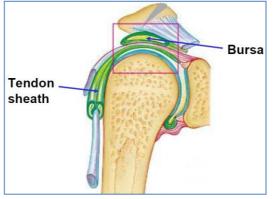



# • Cartilaginous

- Varying amount of movement
- Joined by cartilage
- No joint cavity
- 2 types:
  - Synchondroses eg. Epiphyseal plates
  - Symphyses eg. Intervertebral joints & pubic symphysis

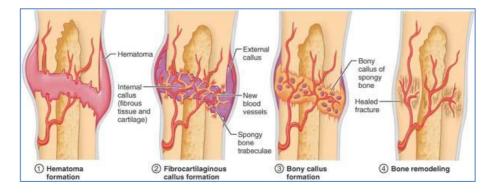


# • Synovial


- Articular (hyaline) Cartilage
  - Covers bone ends
  - Protects bone prevents bone-bone contact
  - Resists shock
  - Avascular nutrients in synovial fluid diffuse to it.
  - Cells = Chondrocytes
- Synovial fluid
  - Lubricates joint
  - Provides nutrition for cartilage
- Synovial membrane (synovium)
  - Lines everything inside the joint that isn't lined by articular cartilage
- Ligaments & Tendons
  - Fibres Collagen
  - Poorly vascularised



- Types of Synovial Joints:
  - Plane intertarsal joints in hand
  - Hinge elbow/knee
  - Pivot proximal radioulnar joint
  - Saddle carpometacarpal joint of thumb
  - Ball & Socket shoulder/hip
  - Condyloid metacarpophalangeal joints
- Synovial Joint Movements:
  - Gliding
  - Angular
    - Flexion/extension/abduction/adduction/circumduction/plantarflexion/ dorsiflexion
  - Rotation
  - Special
    - Inversion/eversion/supination/pronation/protraction/retraction/elevation/ depression/opposition
- Synovial Joint Stability:
  - Articular surfaces shape
    - Bony congruity
  - Ligaments
    - o Capsular
    - o Intracapsular
    - o External
  - Muscle tone
- Movement Limiters:
  - Shape of bone ends
  - Location of ligaments
  - Length of ligaments
  - Other body surfaces


# **Bursae and Tendon Sheaths:**

- Found in close association with synovial joints
- 'bags of lubricant'
  - Lined by synovial membrane
  - o Contain synovial fluid
  - o Reduces friction between adjacent structures



Bone repair mechanisms

- 1. Hematoma Formation
- 2. Fibrocartilaginous Callus Formation
- 3. Bony Callus Formation
- 4. Bone Remodelling



# Shoulder Girdle (Pectorial Girdle):

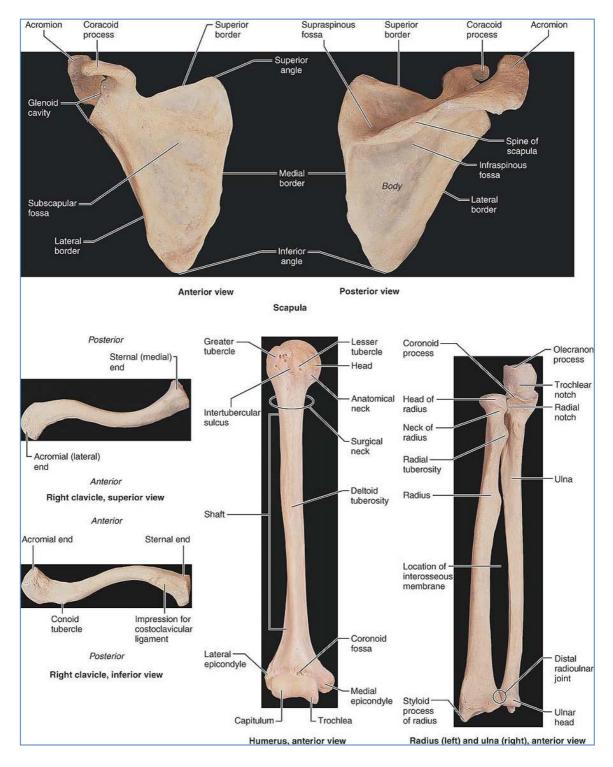
# • Functions:

- Manipulation of environment not locomotion
- Attaches upper limb to axial skeleton
- $\circ$   $\;$  Clavicle acts as 'strut' transmits force to axial skeleton.
  - Gives upper arm reach.
- High Mobility, Low Stability.
- Manubrium of Sternum (breastplate)
  - o Flat bone
  - o Quadrangular shape
- <u>Clavicle</u>
  - Long bone
  - Articulations:
    - Manubrium of Sternum
    - Acromion of Scapula
- <u>Scapula</u>
  - Connects Humerus  $\rightarrow$  Clavicle
  - Landmarks:
    - Lateral Border
    - Medial Border
    - Superior Border
    - Spine
    - Acromion
    - Coracoid Process
    - Glenoid Cavity
  - $\circ$  Articulations:
    - Lateral ends of Clavicle
    - Head of Humerus

# • <u>Humerus</u>

- Long Bone
- Landmarks:
  - Head
  - Greater Tubercle
  - Lesser Tubercle
  - Medial Epicondyle
  - Lateral Epicondyle
  - Olecranon Fossa
- Articulations:
  - Glenoid Process of Scapula
  - Radius
  - Ulnar

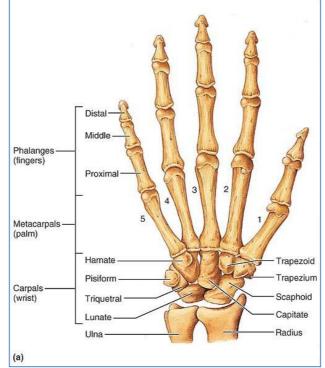
# Ulna: "Elbow"


- 'Little-Finger-Side'
- Wide at Proximal End
- o Thin at Distal End
- Landmarks:
  - Olecranon Process (Posterior Proximal)
  - Trochlear Notch
  - Styloid Process of Ulna
  - Head of Ulna (Articulates with Wrist via Disc of Fibrocartilage)
  - Radial Notch (Articulates with Head of Radius)
- Articulations:
  - Trochlea of Humerus (Via Trochlear Notch between Coronoid & Olecranon Processes)
     When fully extended, Olecranon Process 'Locks' into Olecranon Fossa of Humerus
  - Bones of Wrist
  - Radius via Interosseous Membrane (flat, flexible ligament spanning entire length)

#### <u>Radius: "Rod"</u>

- o 'Thumb-Side'
- o Thin at Proximal end
- Wide at Distal end
- Landmarks:
  - Head concave (Articulates with Capitulum of Humerus)
  - Ulnar Notch (Articulates with Head of Ulna)
  - Styloid Process Of Radius
  - Distal End Concave (Articulates with Carpal Bones of Wrist)

# • Articulations:


- Humerus
- Bones of Wrist
- Ulna via Interosseous Membrane (flat, flexible ligament spanning entire length)
  - Summary of Shoulder Girdle & Arm Bones & Landmarks



• <u>'Hand':</u>

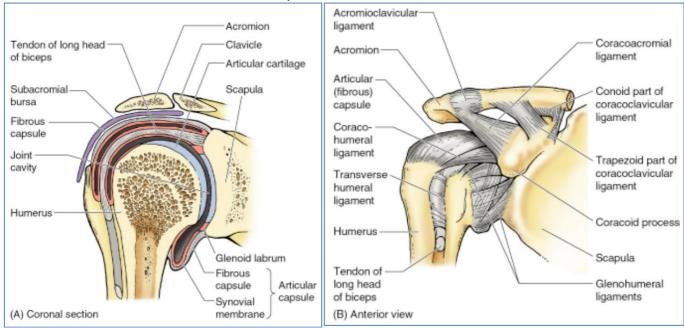
0

- Carpals ("Wrist"):
  - Trapezium
  - Trapezoid
  - Capitate
  - Hamate
  - Pisiform
  - Triquetral
  - Lunate
  - Scaphoid
  - Metacarpals ("Palm"):
    - Metacarpals # 1-5
- Phalanges ("Fingers"):
  - Distal # 1-5
  - Middle # 1-5
  - Proximal # 1-5



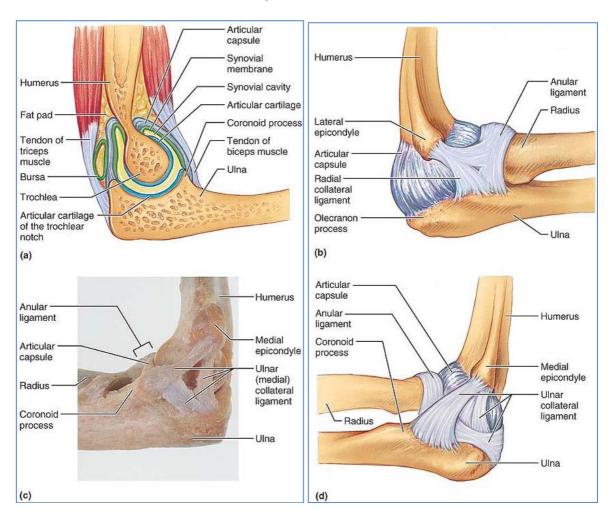
NB: Some Lovers Try Positions That They Can't Handle

Scaphoid, Lunate, Triquetrium, Pisiform, Trapezium, Trapezoid, Capitate, Hamate.


# • AcromioClavicular Joint:

- Features:
  - Joins the Clavicle to the Acromion
  - Synovial Plane
  - Has an 'Articular Disc' (oval plate of fibrocartilage) for congruence between bones.
- Bones:
  - Clavicle
  - Acromion of Scapula
- Ligaments:
  - Coracoacromial
  - Acromioclavicular
    - Coracoclavicular
      - Conoid
        - Trapezoid

#### GlenoHumeral Joint:


#### • Features:

- Joins Humerous & Glenoid Fossa (cavity) of Scapula
- Synovial ball & socket
- Glenoid Fossa = Shallow  $\rightarrow$  allows huge angle of movement.
  - High Mobility
  - Low Stability
- Glenoid Labrum: "Glenoid lip"
  - Ring of cartilage around Glenoid Fossa
  - Deepens socket
  - Helps with stability
- SubAcromial (SubDeltoid) Bursa
  - Acts as a cushion
  - Reduces friction
- Synovial Capsule
  - Very loose
  - Synovial sheath of Biceps Brachii
- Bones:
  - Head of Humerus
  - Glenoid Fossa of Scapula
- Ligaments:
  - GlenoHumeral Ligaments
  - CoracoHumeral Ligament
  - Transverse Humeral Ligaments
    - Bridges the Intertubercular Groove
    - Tendon of Long Head of Biceps Brachii passes underneath
  - \*Fibrous (Articular) Capsule
    - Fused with Rotator Cuff muscles
    - Provides stability



#### <u>Elbow Joint</u>

- HumeroUlnar Joint:
  - Features:
    - Joins Distal Humerus to Proximal Ulna
    - Synovial Hinge Joint
    - Uniaxial Flexion & Extension Only
    - Very Stable Due to Bony Congruency
      - & Ligaments
  - Bones:
    - Humerus
      - o Medial Epicondyle
        - Trochlear
        - Coronoid Fossa
      - Lateral Epicondyle
        - Capitulum
        - Radial Fossa
    - Ulna
    - Ligaments:
      - Ulnar Collateral Ligament
      - Annular Ligament
      - Radial Collateral Ligament



- RadioUlnar Joint:
  - Proximal:
    - Features:
      - Joins Radius & Ulna
      - Synovial Pivot Joint
      - Uniaxial Pronation & Supination Only
    - Bones:
      - Radius
      - Ulna
    - Ligaments:
      - Annular Ligament

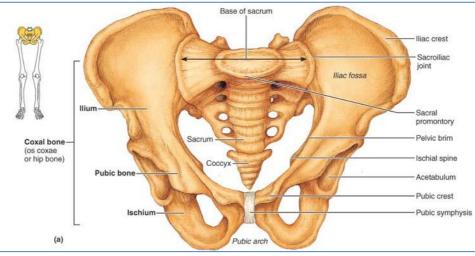
# o <u>Distal:</u>

- Features:
  - Joins Radius & Ulna
  - Synovial Pivot + Articular Disc
  - Uniaxial Pronation & Supination Only
- Bones:
  - Radius
  - Ulna
- Ligaments:
  - Dorsal RadioUlnar Ligament
  - Volar RadioUlnar Ligament

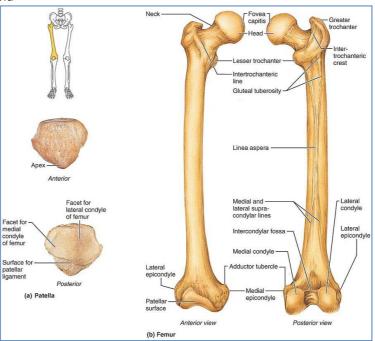
## Wrist Joint:

- CarpiRadialis Joint:
  - Features:
    - Joins Radius & Proximal Carpals
    - Synovial Condyloid
    - Biaxial: Flexion/Extension + Abduciton/Adduction = Circumduction
    - Bones:
      - Radius
      - Proximal Carpals
  - Ligaments:
    - Palmar Carpal Ligament
    - Flexor Retinaculum (Transverse Carpal Ligament) Roof of Carpal Tunnel
    - Dorsal RadioCarpal Ligament

# InterCarpal Joints:


- Features:
  - Joins Adjacent Carpals
  - Synovial Plan
- Bones:
  - Trapezium
  - Trapezoid
  - Capitate
  - Hamate
  - Pisiform
  - Triquetral
  - Lunate
  - Scaphoid
- Ligaments:
  - The various Palmar Intercarpal Ligaments

| Joint                                              | Synovial type | Movements                      |
|----------------------------------------------------|---------------|--------------------------------|
| Intercarpal                                        | plane         |                                |
|                                                    |               | gliding                        |
| 1 <sup>st</sup> Carpometacarpal                    | saddle        |                                |
|                                                    |               | Extension, flexion, abduction, |
|                                                    |               | adduction, circumduction,      |
|                                                    |               | oppositon                      |
| 2 <sup>nd</sup> to 5 <sup>th</sup> Carpometacarpal | plane         |                                |
|                                                    |               | gliding                        |
| Metacarpophalangeal                                | Condyloid     |                                |
|                                                    |               | Extension, flexion, abduction, |
|                                                    |               | adduction, circumduction       |
| Interphalangeal                                    | Hinge         |                                |
|                                                    |               | Extension, flexion             |

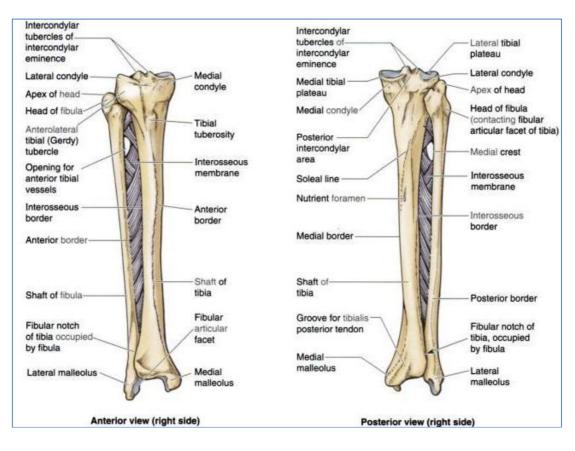

#### The Pelvic Girdle & The Lower Limb

#### Bones:

- The "Bony Pelvis":
  - Sacrum:
    - Type/Features:
      - Irregular Bone
      - The 5 last vertebrae fused together.
      - Articulations:
        - Last Lumbar Vertebra
        - The 2 Hip Bones (Sacroiliac Joints)
        - The Coccyx
    - Coxal Bones (hip bones):
      - Type/Features:
        - Irregular Bones
        - Made up of 3 Bones during Childhood:
          - o Ilium
          - o Ischium
          - o Pubis
      - Landmarks:
        - Acetabulum ("Wine Cup") Hemispherical Socket
        - Pelvic Brim
        - Ilium
          - o Iliac Crest
          - o Tubercle of the Iliac Crest
          - o Anterior Superior Iliac Spine ASIS
          - Posterior Superior Iliac Spine PSIS
          - Anterior Inferior Iliac Spine AIIS
          - Posterior Inferior Iliac Spine PIIS
          - Greater Sciatic Notch Sciatic Nerve passes through
          - o Iliac Fossa
        - Ischium
          - Ischial Tuberosity –(Huge Sacrotuberous Ligaments run from here to sacrum)
        - Pubis
          - Pubic Tubercle
          - Pubic symphysis
          - Obturator Foramen blood vessel & nerves pass through
          - Pubic Arch/Subpubic Angle (Wide in females)
      - Articulations:
        - Sacrum
        - Femurs
        - The other Coxal Bone (pubic symphysis)



- Femur:
  - Type/Features:
    - Long bone
    - Longest & Strongest bone of the body.
    - Angle of Inclination 125°
    - Angle of Anteversion 10°
    - Neck of femur prone to fracture due to lack of trabeculae.
  - Landmarks:
    - Head
      - Neck
      - Greater Trochanter
      - Lesser Trochanter
      - Lateral Epicondyle
      - Medial Epicondyle
      - Adductor Tubercle
    - Patellar Surface
  - Articulations:
    - Acetabulum of the Coxal Bones of the Hip
    - Patella
    - Tibia




- <u>Patella</u>
- Type/Features:
  - Triangular Sesamoid Bone
  - Enclosed in Quadriceps Tendon
  - Protects Knee Joint Anteriorly
  - Improves Leverage of thigh muscles across the knee.
- Landmarks:
  - Lateral Facet
  - Medial Facet
  - Apex
  - Articulations:
    - Femur Patellar Surface (extended knee)
    - Femur Lateral & Medial Condyles (Flexed knee)

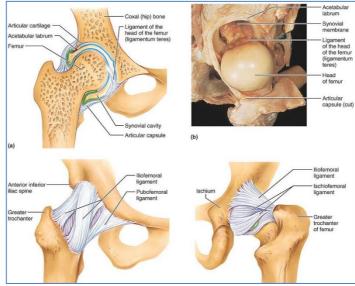
- <u>Tibia</u>
- Type/Features:
  - Long Bone
  - 2<sup>nd</sup> largest bone in the body.
    - Transmits the Body's weight (not fibula)
  - Shaft is vertical within the leg
- Landmarks:

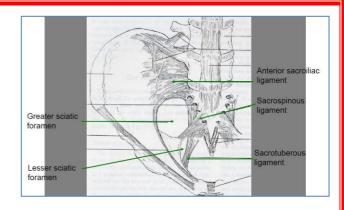
•

- Condyles Medial & Lateral
- Tibial Plateau (superior articular surface)
- Tibial Tuberosity
- Medial Malleolus
- Articulations:
  - Condyles of Femur
  - Fibula Fibular Facet (proximally)
  - Trochlea of Talus Bone of Tarsals of the Foot.
  - Fibula Fibular Notch (distally)
- <u>Fibula</u>
- Type/Features:
  - Slender Long Bone
  - Attached to Tibia by Tibiofibular Syndemosis (Incl. Interosseous Membrane)
  - Unlike Radius & Ulna, the leg is fixed (can't supinate/pronate)
  - No function in weight-bearing mainly for muscle attachment
- Articulations:
  - Tibia Proximally & Distally
  - Trochlea of Talus Bone of Tarsals of the Foot.



#### Joints:

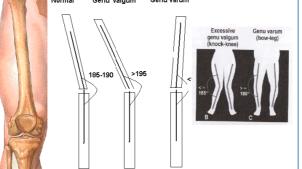

- <u>Sacro-Iliac:</u>
  - Features:
    - Synovial Planar Joint
    - Loosens during labour.
  - Bones:
    - Sacrum
    - Ilium
  - Ligaments:
    - Anterior Sacroiliac Ligament
    - Posterior Sacroiliac Ligament
    - Interosseous Sacroiliac Ligament


### Pubic Symphysis

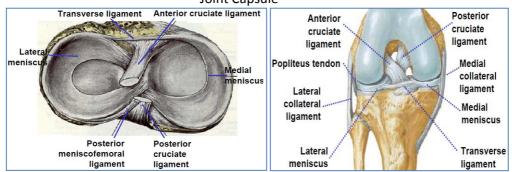
- Features:
  - Cartilagenous Joint
  - Loosens during labour
- o Bones:
  - Left & Right Pubis
- Ligaments:
  - Ligamentous Capsule encases Fibrocartilagenous Disc.

# • <u>Hip Joints:</u>

- Features:
  - Synovial, MultiAxial Ball & Socket
  - Acetabular Labrum (lip) of fibrocartilage deepens socket High Bony Congruency
  - Central fat-filled acetabular fossa.
- o Bones:
  - Rounded head of Femur
  - Acetabulum of Innominate Bones.
- Ligaments:
  - Iliofemoral Ligament (anterior)-[From Anterior Inferior Iliac Spine → Intertrochanteric Line]
    - Limits extension, lateral rotation, adduction & abduction
  - **Pubofemoral** (medial)-[From Iliopubic Eminence → Inferior Aspect of Intertrochanteric Line]
    - Limits extension, lateral rotation & abduction
    - **Ischiofemoral** (posterior)-[From Posterior aspect of Acetabulum  $\rightarrow$  Greater Trochanter]
      - Limits extension, medial rotation & adduction
  - Ligamentum Teres (Ligament of Head of Femur)
    - Not for stability provides passage for vessels

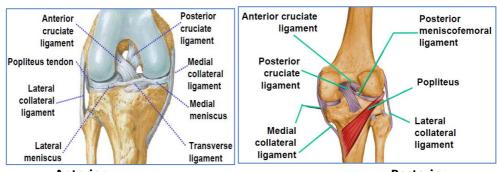






#### Knee Joint:

- Features of The Knee Joint:
  - Synovial Modified Bicondylar Hinge Joint
  - Relatively Unstable:
    - Some Gliding & Rolling
    - Some Rotation
    - Ligaments provide the stability not Bony Congruity.
  - Poor Bony Congruity
  - 2 Parts:
    - Tibiofemoral Joint
    - PatelloFemoral Joint
  - Femur sits on an angle Medial Condyle of Femur extends further distally to accommodate the angle of articulation with the Tibia.

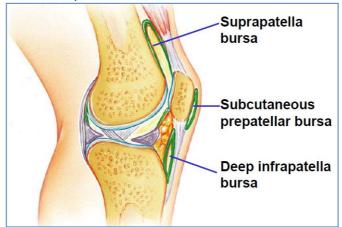
Normal Genu valgum Genu varum




- Menisci:
  - Fibrocartilage on Tibial Plateaus
  - Deepens the socket increases congruity
  - Shock absorption
  - Peripheral Aspects are Vasculated Central Aspects aren't  $\rightarrow$  heal very slowly
  - Lateral:
    - More freely movable than Medial Meniscus due to attachments
    - Attachments:
      - Post. Cruciate Ligament via Post. Meniscofemoral Ligament
      - Weak attachment to Joint Capsule
      - Medial Meniscus via Transverse Ligament
  - Medial:
    - More firmly attached but higher chance of injury due to less give + connections to other things
    - Attachments:
      - Intercondylar Areas Anterior & Posterior
      - Medial Collateral ligament
      - Joint Capsule



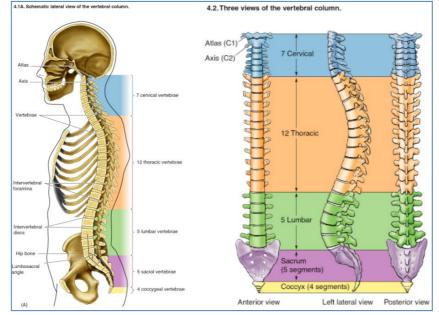
- o <u>Bones:</u>
  - Femur
  - Patella
  - Tibia


- o Ligaments:
  - Fibrous Capsule
    - Thick on Medial & Lateral aspects
    - 'Sleeve' around joint.
  - Extracapsular:
    - Patellar Ligament Very Stong
    - Collaterals (Medial & Lateral)
  - Intracapsular:
    - Cruciates (Anterior & Posterior Named in respect to their attachment to the Tibia)
      - o Anterior
        - Stops Forward Displacement of Tibia on Femur
        - Tightens During Extension
      - o Posterior
        - Stops Backward Displacement of Tibia on Femur
        - Tightens During Flexion
      - Transverse Ligament (between Menisci)
    - Meniscofemoral Ligament (from Lateral Meniscus → Posterior Cruciate Ligament)



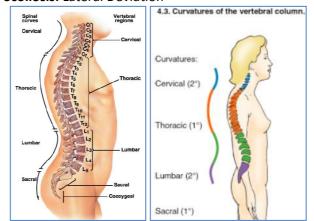
Anterior

Posterior


- Bursae:
  - SupraPatella Bursa
    - Continuous with Snyovial Joint Cavity
    - Sits underneath Quads Tendon
  - Subcutaneous PrePatellar Bursa
    - Anterior to Patella
    - For kneeling
  - Deep Infrapatella Bursa
    - Sits on top of Fat Pads below Patellar Tendon

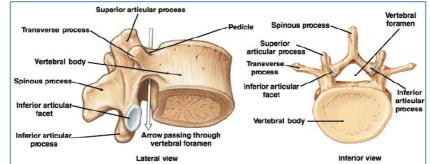


### Bones:


# <u>Vertebral Column:</u>

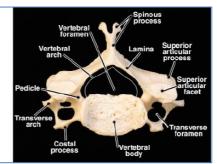
- o <u>General Info:</u>
  - 33 Vertebrae
  - 5 Regions:
    - 7x Cervical
    - 12x Thoracic
    - 5x Lumbar
    - 5x Sacral (fused by adulthood)
    - 4x Coccygeal
    - Bones increase in size towards the bottom. (due to increased load/weight)
  - Protects Spinal Chord
  - Fibrocartilaginous Intervertebral Discs



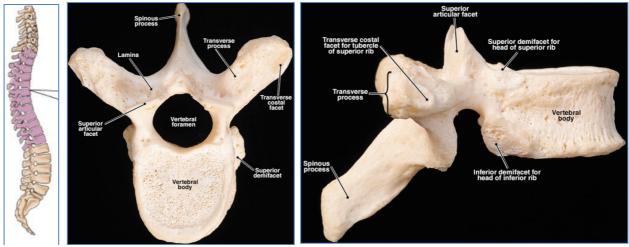

# <u>Curvatures:</u> 2x P

- 2x Primary: (Concave Anteriorly)
  - Ie. Thoracic
  - & Sacral
- 2x Secondary (Concave Posteriorly)
  - Ie. Cervical
  - & Lumbar
  - Abnormalities:
    - **Kyphosis:** Excess 1<sup>0</sup> curvature
    - Lordosis: Excess 2<sup>0</sup> curvature
    - Scoliosis: Lateral Deviation

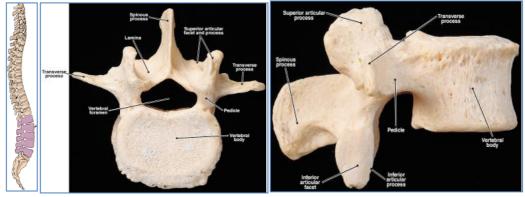



#### • Typical Vertebrae:

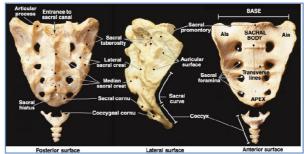
- Body
- Vertebral Arch
- Vertebral Foramen (canal)
- Transverse Processes
- Spinous Processes
- Articular Processes
  - Superior
  - Inferior
- Intervertebral Foramen (passage of the spinal nerve root between vertebrae)



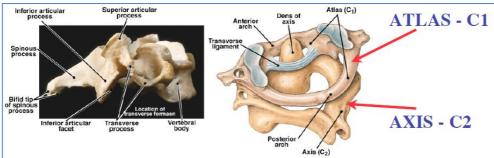

- 7x Cervical: Distinguishing Features:
  - Small Body
  - Very Large Vertebral Foramen
  - Transverse Foramena: Holes in Transverse Processes → passage of vertebral arteries
  - Dual Spinous Processes







- **12x Thoracic:** Distinguishing Features:
  - Medium Sized Body
  - Thick Lamina
  - Single Spinous Process
  - Costal Facet on Transverse Processes & Body for Ribs

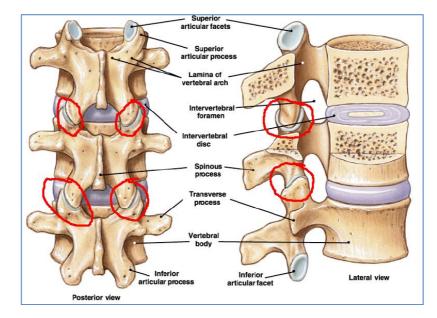



- **5x Lumbar:** Distinguishing Features:
  - Very Large Body
  - Smaller Vertebral Foramen
  - No Costal Facets
  - Chode-like Spinous Processes

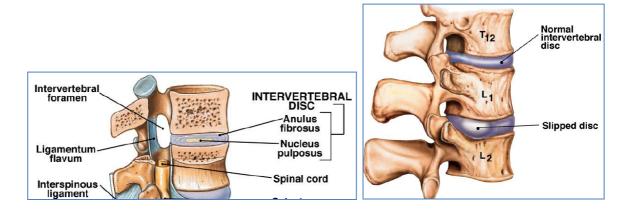


- **5x Sacrum:** Distinguishing Features:
  - Obvious
  - Don't bother with landmarks of this
  - **4x Coccyx:** Distinguishing Features:
    - Obvious
    - Don't bother with landmarks of this




- Special "Atypical" Vertebrae:
  - C1 Atlas:
    - No Body
    - Just a ring of bone
      - Anterior Arch
      - Posterior Arch
    - Transverse Foramena: Holes in Transverse Processes → passage of vertebral arteries
    - Transverse Ligament for Dons of Axis
    - Skull Sits on top of this bone
  - C2 Axis:
    - Small body with a protuberance: The "Dens of Axis"
    - Wide Lamina & Vertebral Foramen
    - Transverse Foramena: Holes in Transverse Processes → passage of vertebral arteries

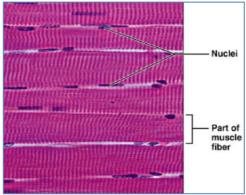



- o Joints:
  - Atlanto-Occipital Joint:
    - Synovial Egg & Spoon Joint
    - Between the Skull & The Atlas
    - Allows you to nod (the 'yes' joint)
  - Atlanto-Axial Joint:
    - 2 Parts:
      - Synovial Pivot
        - Dens of Axis & Transverse Ligament of Atlas
      - Synovial Planar
        - Superior Articular Surface of Axis & Inferior Articular Surface of Atlas.
    - Allows the head to turn (the 'no' joint)

# Zygopophyseal (Facet) Joints:

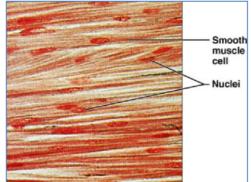
- Synovial Planar Joints
- Between the Superior & Inferior Articular Processes of 2 Vertebrae




- Intervertebral Discs:
  - Cartilaginous Joints (Symphyses)
  - Allows slight movement between vertebrae
  - Nucleus can herniate out  $\rightarrow$  'Slipped Disc'
    - If the herniation puts pressure on a spinal nerve  $\rightarrow$  pain.

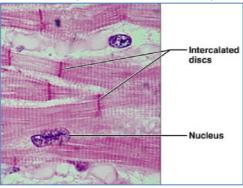


#### <u>A&P</u> Muscle Anatomy & Physiology


### Muscle Tissue:

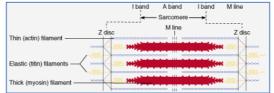
- <u>3 Types</u>
  - Skeletal
    - Attaches to bone for movement (voluntary)
    - Long, Cylindrical
    - Multinucleated
    - Obvious striations → sarcomeres.




### o Smooth

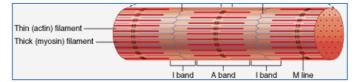
- In the walls of visceral organs eg. GI tract/urinary tract/birth canal
- Spindle-shaped cells
- Central nuclei
- No striations → no sarcomeres
- Cells arranged closely to form sheets (often opposing-laterally perpendicular)
- Usually involuntary Controlled by the autonomic nervous system




# • Cardiac

- Makes up the heart.
- Long, Branched, Cylindrical
- Striations → sarcomeres
- Usually single-nucleated
- Intercalated discs cell membranes of 2 adjacent cells bound mechanically (desmosomes), chemically & electrically (gap junctions). Essentially makes the entire heart one single muscle.
- Involuntary controlled by autonomic nervous system




### **Revision of Skeletal Muscle Structure:**

- Myofilaments
  - Contractile *Proteins*:
    - Actin (Thin)
    - Myosin (Thick)
  - **Z-Disc** anchors sarcomeres together.
    - Ensures whole cell contraction.

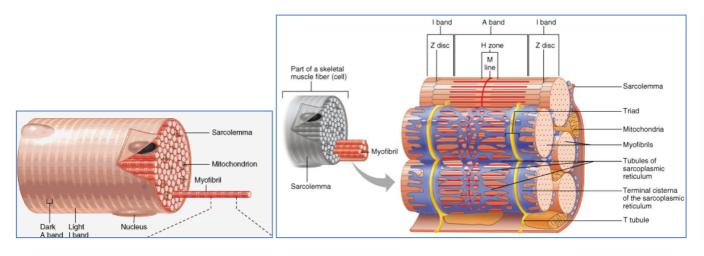


# • Myofibrils

- Contractile Organelles:
- Sarcomeres  $\rightarrow$  striped appearance
  - Z-Disc  $\rightarrow$  Z-Disc
  - Mid I-Band → Mid I-Band



### • Muscle Fibres (cells)


- o Contractile Cells
- o Sarcolemma (plasma membrane)
  - Transverse ('T') Tubules
    - Perpendicular Invaginations of the sarcolemma (PM)
    - Runs between paired terminal cisterna of Sarcoplasmic Reticulum
    - Conducts impulses from sarcolemma deep into cell for mass myofibril contraction.
- Sarcoplasm (cytoplasm large glucose stores + myoglobin oxygen supply)

# • Sarcoplasmic Reticulum

- Tubular network
- Stores & Regulates intracellular Ca<sup>+</sup> levels necessary for contractions.
- Surrounds each myofibril (contractile organelle)
- Terminal Cisternae of the SR butt up on either side of the T-Tubules → forms a 'Triad'
- Triads occur at every I.Band–A.Band junction.
- Abundant Mitochondrion energy


# • Endomysium

- o Connective Tissue
- Wraps single muscle fibres (cells)



### Muscle Fascicles

- o Bundles of muscle fibres (cells)
- Perimysium
  - Connective Tissue
  - Wraps Fascicles
- Single Muscle
  - Muscle as a whole eg. The bicep.
- Epimysium
  - $\circ\quad \text{Connective Tissue}$
  - Wraps whole muscle.
- Tendons
  - A fusing together of all connective tissue layers.
  - Connects muscle to bone



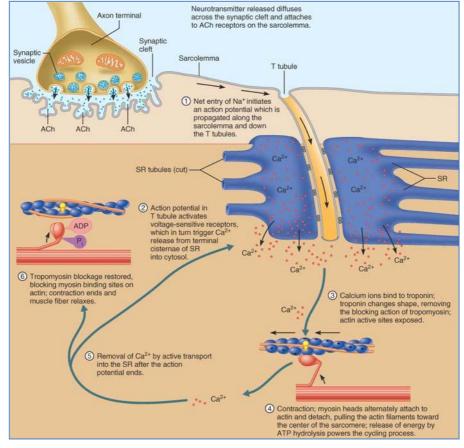
Tendon

Epimysium

Endomysium

Blood

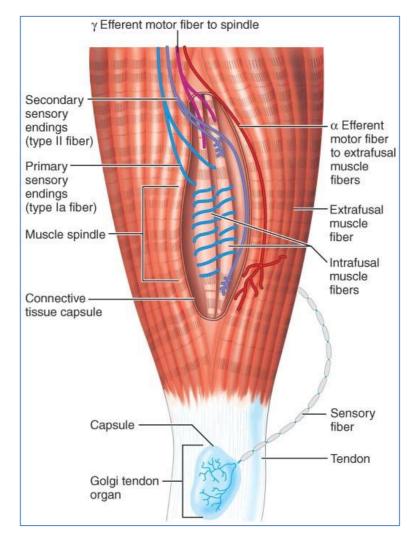
vessel


Muscle fiber (cell)

Endomysium

(betwe fibers)

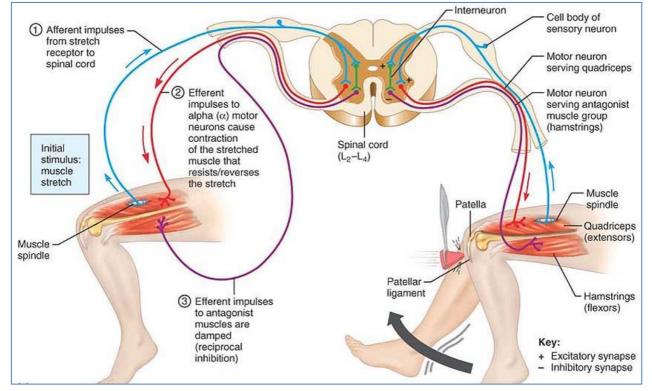
### Events @ Neuromuscular Junction:


- Each axon results in several neuromuscular junctions with single muscle fibres.
- Events:
  - Nerve impulse reaches axon terminal
  - Voltage-gated Ca channels open.
  - Ca diffuses into axon terminal
  - o Causes vesicles of ACh to be exocytosed into synaptic cleft.
  - ACh binds to receptors on sarcolemma
  - Initiates action potential along muscle cell membrane.
  - ACh is swiftly broken down by ACh-esterase  $\rightarrow$  allows quick successive stimuli.
  - Action potential propagates along sarcolemma & down T-Tubules.
  - Action potential causes **terminal cisternae** to **release Ca**<sup>+</sup> into the sarcoplasm.
  - Ca<sup>+</sup> binds to troponin  $\rightarrow$  removes tropomyosin.
  - Myosin heads attach & pull thin filaments towards centre of sarcomere.
  - Ca<sup>+</sup> actively reabsorbed by Sarcoplasmic Reticulum
  - o Troponin-Tropomyosin Complex is re-established
  - Cross-Bridging ceases

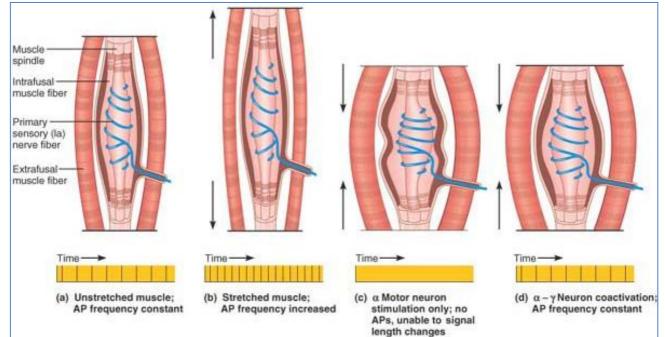


# www.regentstudies.com

### Muscle Sensory Feedback

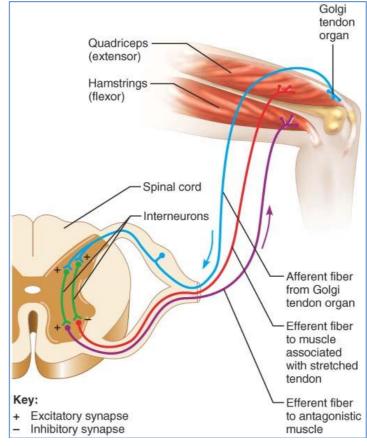

- Muscles need to 'know what they are doing'
  - o Tension...and....
  - Length of the muscle.
  - How? Through "Proprioception" (via proprioceptors)
    - $\circ\quad$  Awareness of body positioning in space.
    - Mediated by Cerebral Cortex & Cerebellum
- **<u>Proprioceptors:</u>** (Muscle Spindles & Golgi Tendon Organs)




- o Muscle Spindles:
  - Encapsulated Proprio-Mechano-Receptors
  - Located inside muscle amongst normal (extrafusal) muscle fibres.
  - Intrafusal Muscle Fibres ("inside spindle")
    - Receptive Central Region:
      - o Receptive
      - Non-contractile  $\rightarrow$  Lack myofilaments
      - Wrapped by **primary** afferent endings of large **type la** sensory fibres:
        - Monitor rate & degree of stretch.
      - Receptive Spindle Ends:
        - Receptive
          - Wrapped by **secondary** afferent endings of small **type II** sensory fibres:
            - Monitor degree of **stretch** only.
      - Distal Contractile Spindle Ends:
        - Contractile  $\rightarrow$  Contain myofilaments
        - Innervated by **gamma (y) efferent fibres** originate in ventral horn.
        - Maintain spindle sensitivity.



- 1. Spindle activated by stretch
- 2. Types Ia & II sensory fibres transmit impulses to spinal cord.
- 3. Sensory fibres synapse with  $\alpha$ -Motor-Neurons in spinal cord
- 4. Transmits action potential to muscle
- 5. Contracts extrafusal fibres of the stretched muscle
- 6. Prevents further stretching of muscle
- 7. Also inhibits antagonistic muscles  $\rightarrow$  Reciprocal Inhibition




- Adjusting Muscle Spindle Sensitivity:
  - Muscle spindles require a certain tension to work properly.
  - If intrafusal fibres didn't contract with the extrafusal fibres during muscle contraction, the spindles would go slack & cease generating action potentials.
  - **α-γ Coactivation** prevents this by sending voluntary contractile action potentials to the intrafusal fibres as well as the extrafusal fibres.
  - Maintains spindle tension (and therefore its sensitivity)

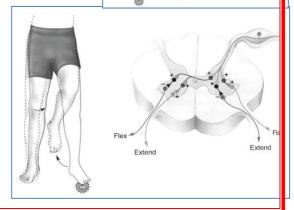


### o Golgi Tendon Organs:

- Encapsulated Proprio-Mechano-Receptors
- Innervated by type Ib afferent fibres
- In tendons connecting to bone
- Monitor muscle tension
- Inhibits contraction of muscle when tension is too great Golgi Tendon Reflex:
  - When tension reaches a threshold, Golgi tendon organs are activated.
  - Afferent impulses transmitted to spinal cord
  - Contracting muscle is relaxed + Antagonist muscle is contracted.



### o <u>Cerebral Cortex & Cerebellum</u>


- Integrates Afferent Input
- Fine-tunes motor outputs
- Subconscious level

### **Flexor Reflex:**

- Painful cutaneous stimuli of the limbs causes withdrawal from the stimulus.
- Polysynaptic contracts & relaxes multiple different muscles.

### **Crossed Extensor Reflex:**

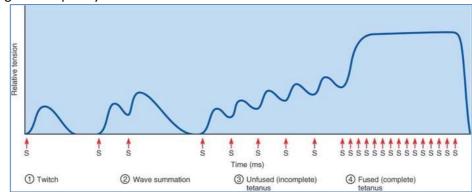
- Painful cutaneous stimuli of a limb causes withdrawal of that limb and extension of the opposite limb.
- Information crosses over to opposite side of spinal cord → excites extensor muscles of opposite limb.



### Muscle Tone:

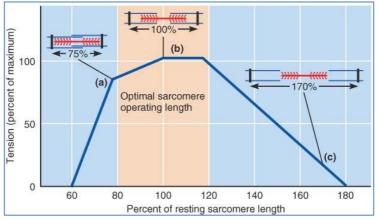
- Sustained partial contraction exhibited in 'relaxed' muscles.
   In response to stretch receptors
  - Keeps muscle poised & ready
- Keeps muscle healthy
- Maintains posture and stabilises joints.

# **Determinants of Contractile Force:**


- Number of Muscle Fibres Stimulated:
  - $\circ$   $\;$  The more motor units recruited, the greater the force.
  - $\circ$   $\;$  The more muscle fibres recruited, the greater the force.

# • Size of Muscle Fibres Stimulated:

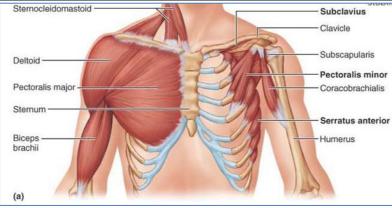
- Proportional to cross-sectional area
- The larger the entire muscle  $\rightarrow$  greater the force
- The larger the muscle fibre  $\rightarrow$  greater the force.
- Muscle building causes *hypertrophy* of muscle fibres (cells).


# • Frequency of Stimulation:

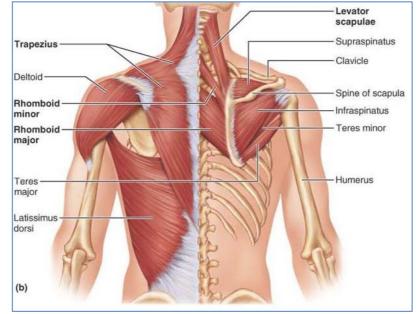
- Wave summation of twitches
- Cytosolic Ca<sup>2+</sup> rises contractile force increases
- Highest frequency: **Tetanus.**

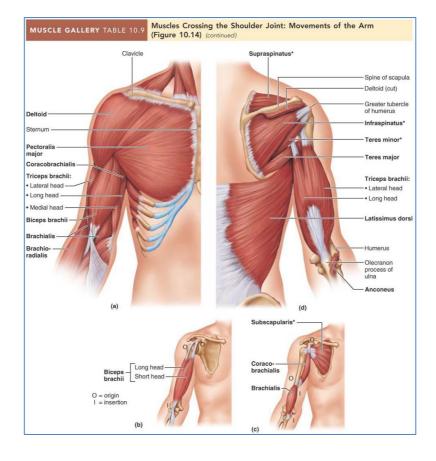


# • Degree of Muscle Stretch:

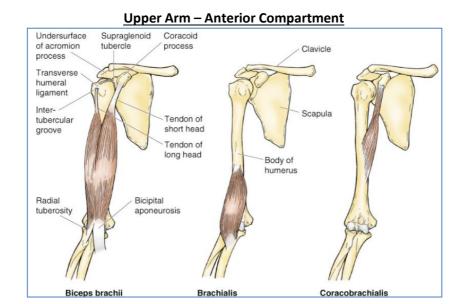

• Optimal: when all myosin heads can form cross-bridges.



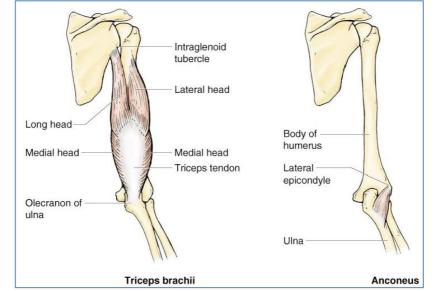

# • Muscle Fibre Type:

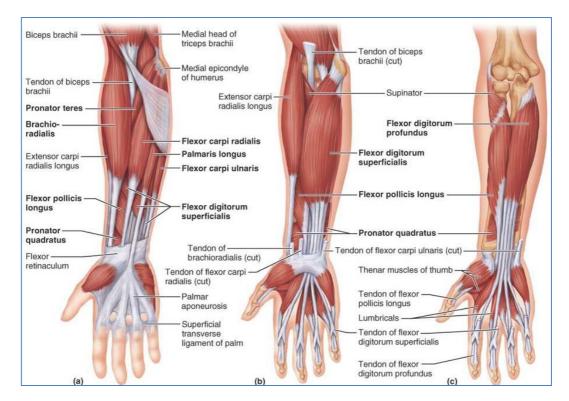

- White:
  - Anaerobic
  - Larger cross-sectional area
  - Higher force generators
- o Red
  - Aerobic
  - Many mitochondria
  - Less force generated

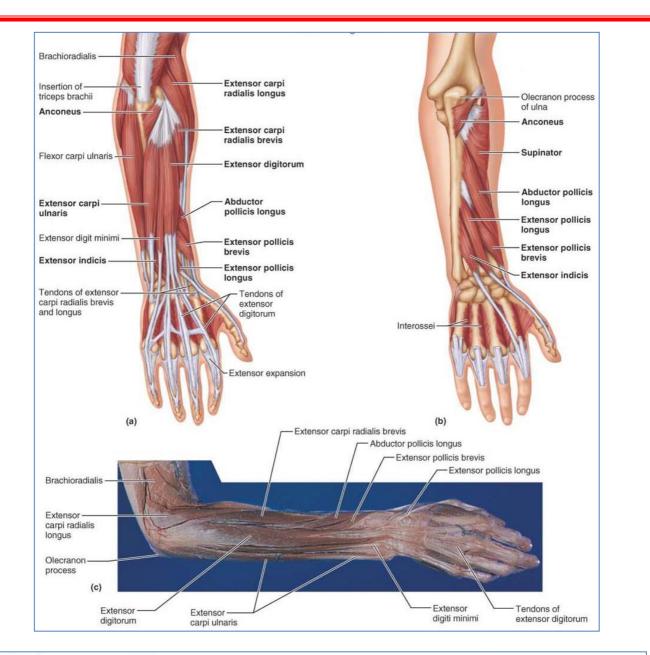
#### Anterior View: Deep & Superficial Muscles of The Pectoral Girdle & The Glenohumeral Joint

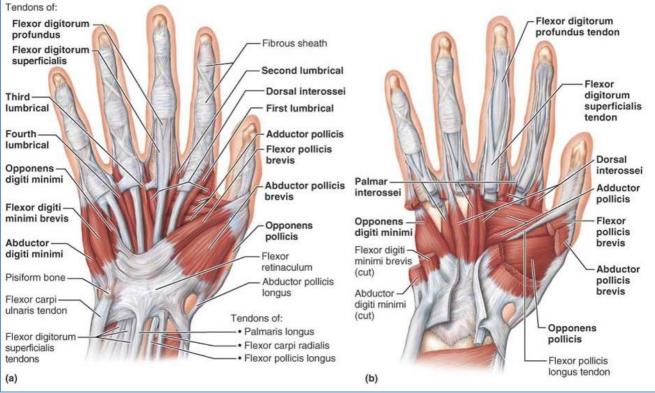


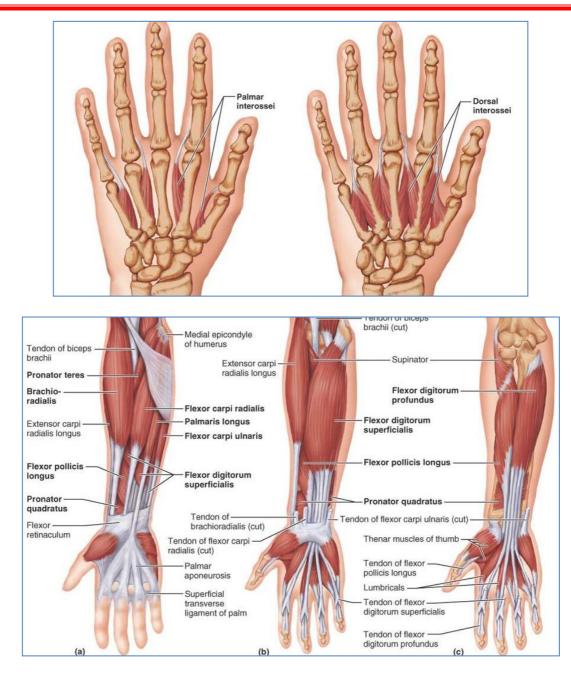

#### Posterior View: Deep & Superficial Movers of The Pectoral Girdle & The Glenohumeral Joint

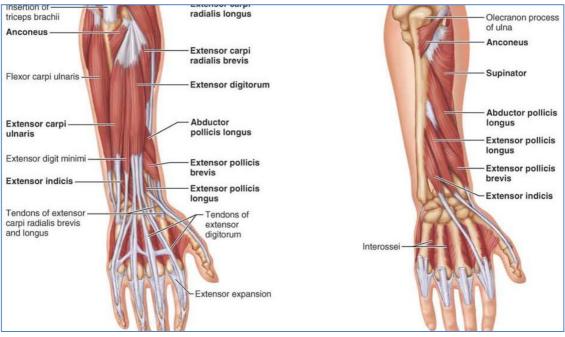


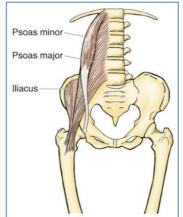


### www.regentstudies.com



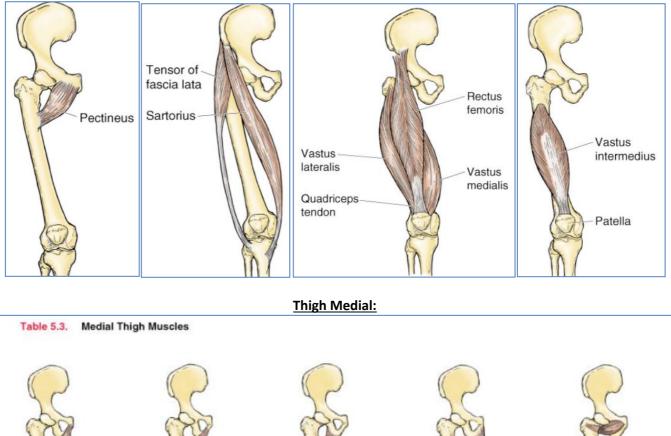









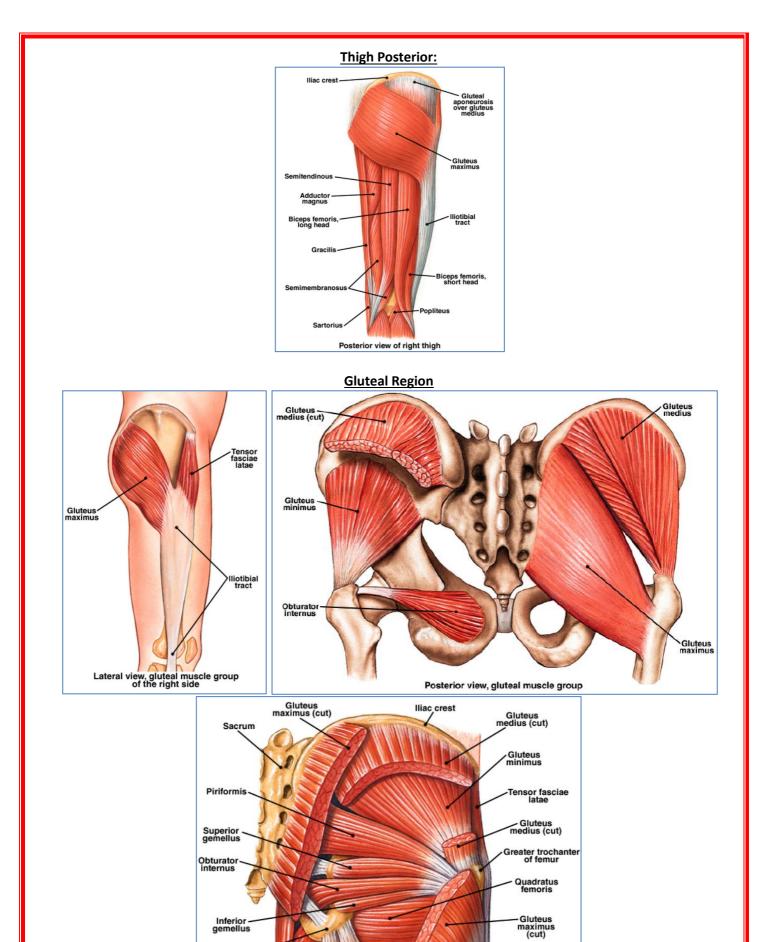





Iliopsoas: Iliacus, Psoas Major, Psoas Minor






Adductor magnus

Gracilis

Obturator externus

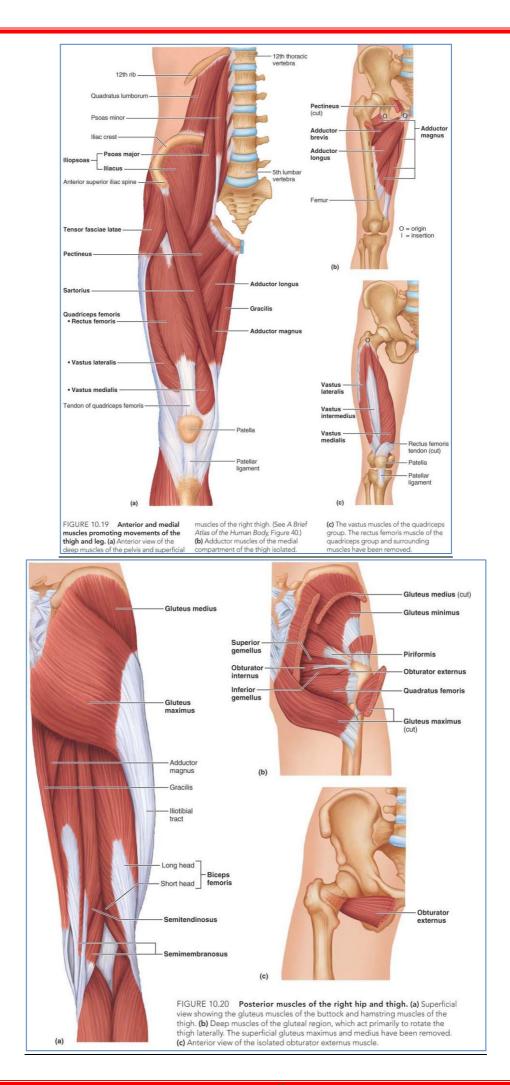
Adductor brevis

Adductor longus

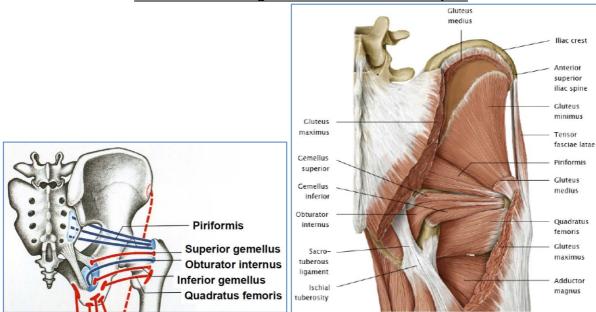


Posterior view, deep muscles

**Iliotibial tract** 


Adductor magnus

Biceps femoris (long head)

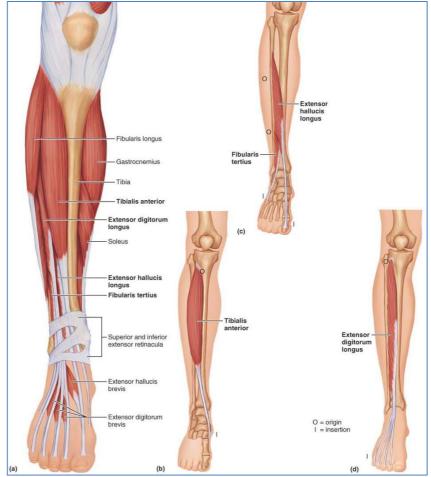

Ischial tuberosity

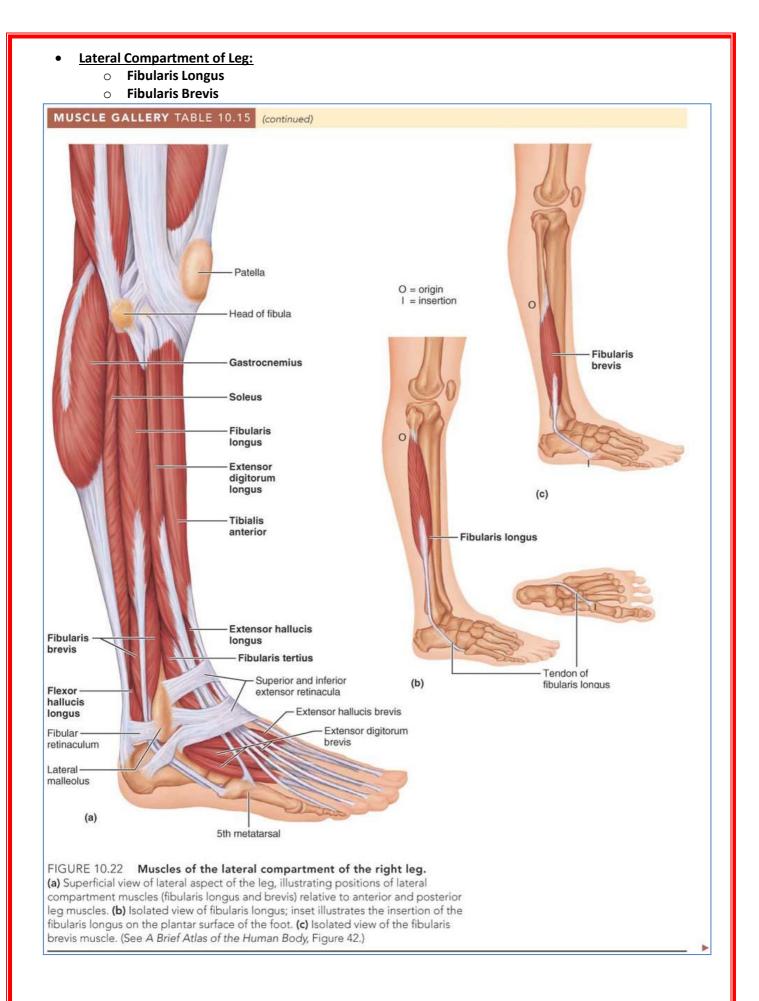
> Gracilis Adductor magnus

> > Semitendinosus



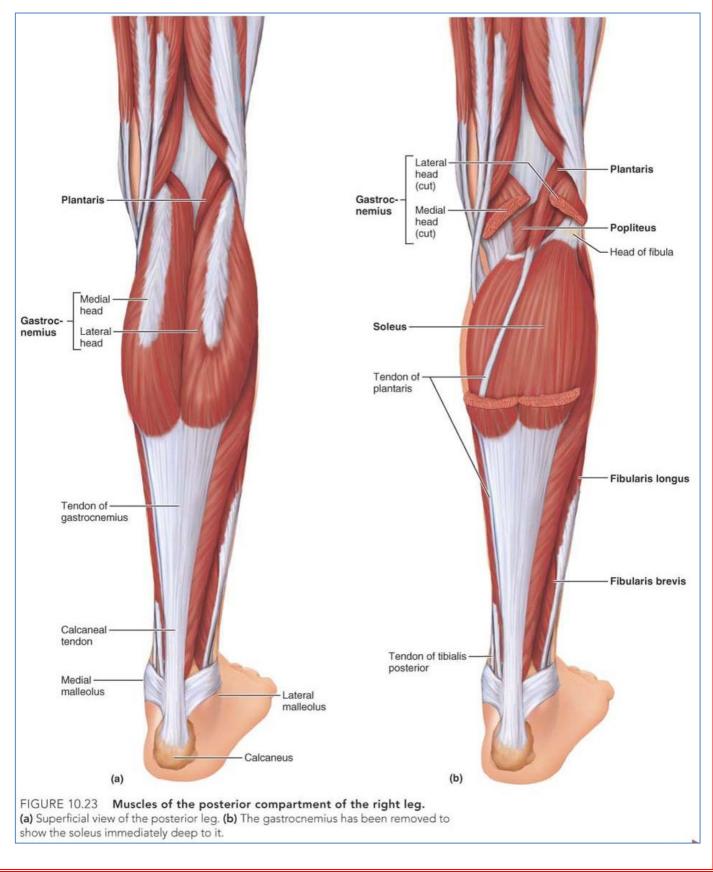
#### Lateral Rotators: Origins & Insertions: Posterior Aspect

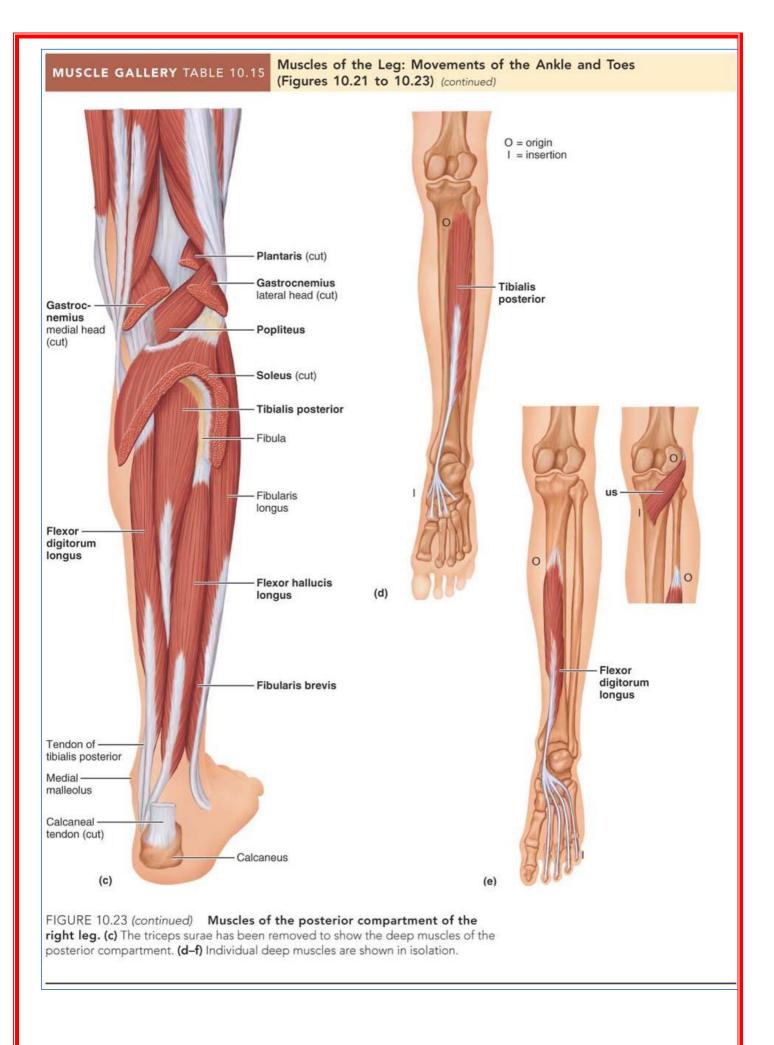




# Anterior Compartment of Leg:

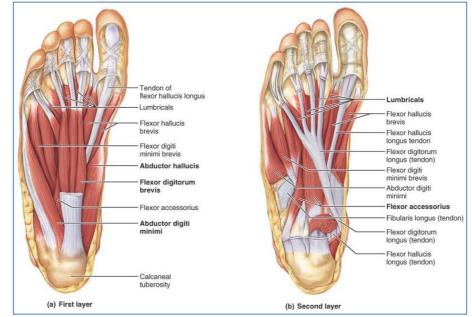
- Tibialis Anterior:
  - Dorsiflexion
  - Deep Fibular Nerve
- Extensor Hallucis Longus:
  - Extension of Big Toe
  - Extensor Digitorum Longus:
    - Extension of Phalanges 2→5
- Fibularis Tertius:

0

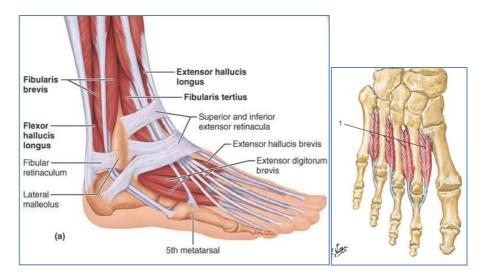

- Dorsiflexion
- Deep Fibular Nerve





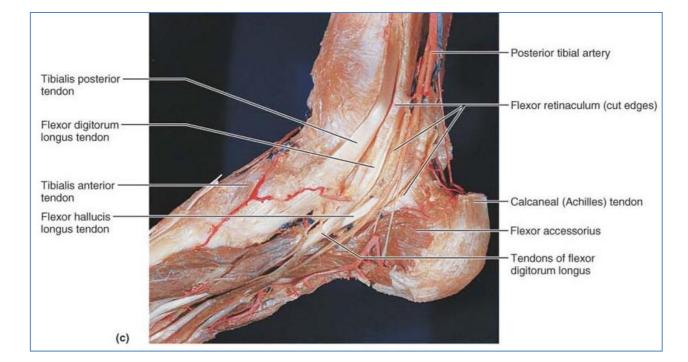


### Posterior Compartment of Leg:

- Triceps Surae:
  - Gastrocnemius Medial Head:
  - Gastrocnemius Lateral Head:
  - Soleus:
- Plantaris:
- Tibialis Posterior:
- Flexor Digitorum Longus:
- Flexor Hallucis Longus:



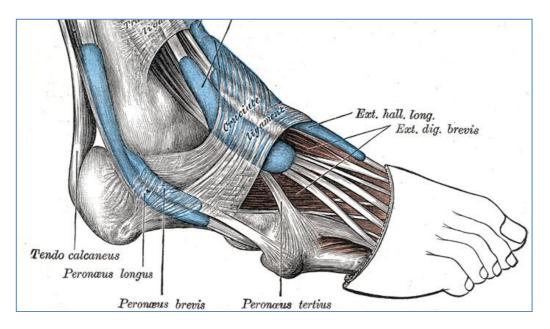



- Intrinsic Muscles of the Foot:
  - o Plantar Aspect:
    - First Layer:
      - Abductor Hallucis
      - Flexor Digitorum Brevis
      - Abductor Digiti Minimi
    - Second Layer:
      - Flexor Hallucis Brevis
      - Quadratus Plantae
      - Flexor Digiti Minimi Brevis
      - Lumbricals
    - Third Layer:
      - Adductor Hallucis Transverse Head
      - Adductor Hallucis Oblique Head
    - Fourth Layer:
      - Plantar Interossei Abduct Toes

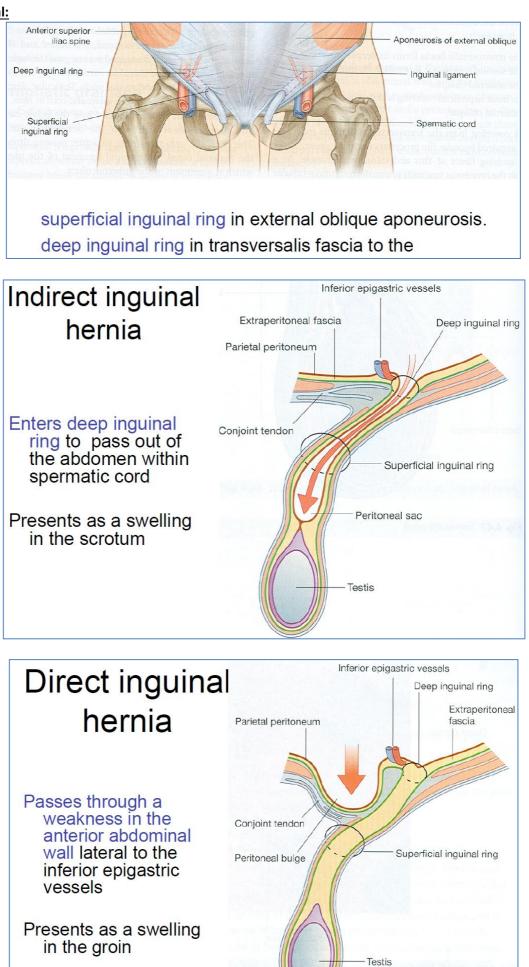



- o Dorsal Aspect:
  - First Layer:
    - Extensor Hallucis Brevis
    - Extensor Digitorum Brevis
  - Second Layer:
    - Dorsal Interossei Abduct Toes



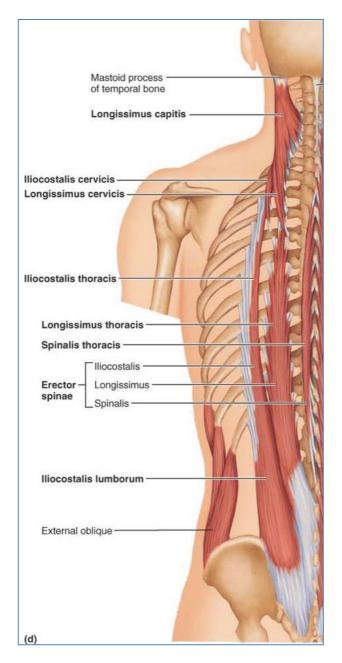

#### **Structures Passing Medial Malleolus:**

- Tom Tibialis Posterior
- Dick Flexor Digitorum Longus
- And Posterior Tibial Artery
- Naughty Tibial Nerve
- Harry Flexor Hallucis Longus

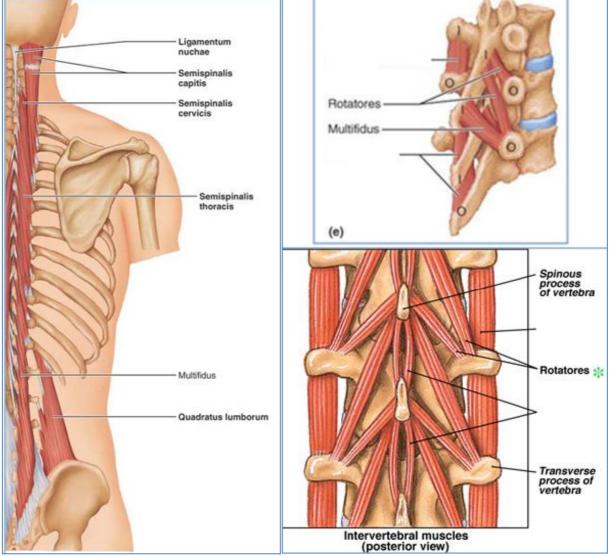



# **Structures Passing Lateral Malleolus:**

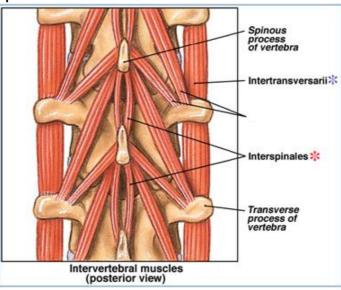
- Fibularis Longus
- Fibularis Brevis




### **Inguinal Canal:**




### **Deep Back Muscles:**


- Erector Spinae: Most Superficial Group (I Love Sex)
  - I LOVE SEX)
    - lliocostalis: (Lumborum/Thoracis/Cervicis)
      - Lateral-most
        - O Iliac Crest
        - I Lumbar & Thoracic Ribs + Transverse Processes of Cervical Vertebrae
    - Longissimus: (Thoracis/Cervicis/Capitus)
      - Between Iliocostalis & Spinalis
      - O Transverse Processes of Lumbar, Thoracic & Cervical Vertebrae
      - I Ribs Superior to Origin, Or, Transverse Processes of Thoracic or Cervical Vertebrae
      - Spinalis: (Thoracis/Cervicis/Capius)
        - Medial-most
        - O Spines of Upper-Lumbar & Lower-Lumbar Vertebrae
        - I Spinous Processes of Upper Thoracic & Cervical Vertebrae



- <u>TransversoSpinalis: Intermediate Group</u> (Sex Me Right)
  - Semispinalis
  - Multifidus
  - Rotatores
    - In Thoracic Region Only

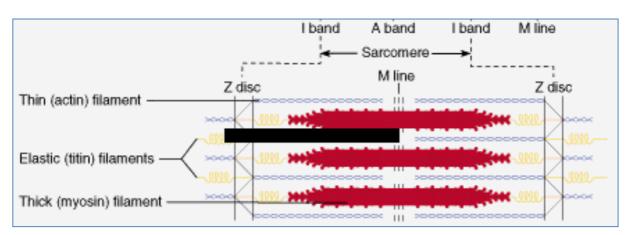


- <u>Deep Group: Deepest Group</u> (I Tried Indoor Sex)
  - InterTransversalis
  - InterSpinales



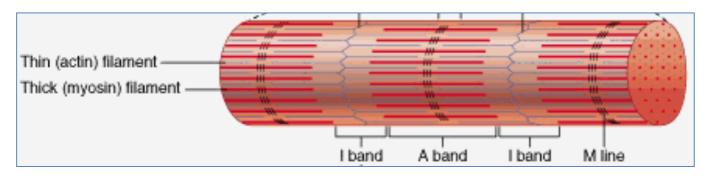
### **Muscle Biology & Contraction**

### **Types of Muscle:**


- Skeletal
- Cardiac
- Smooth

### Functions of Muscle:

- To Push, Not Pull (except genitals + tongue)
- Skeletal Movement
- Circulation of Blood
- Motility of GI Tract Contents
- Secretion of Glands
- Structural Support

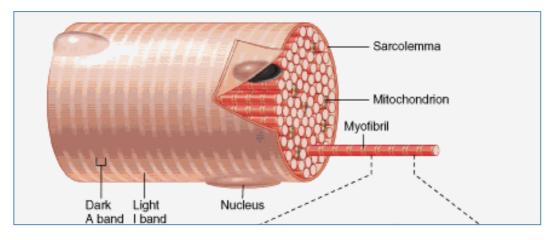

# **Revision of Skeletal Muscle Structure:**

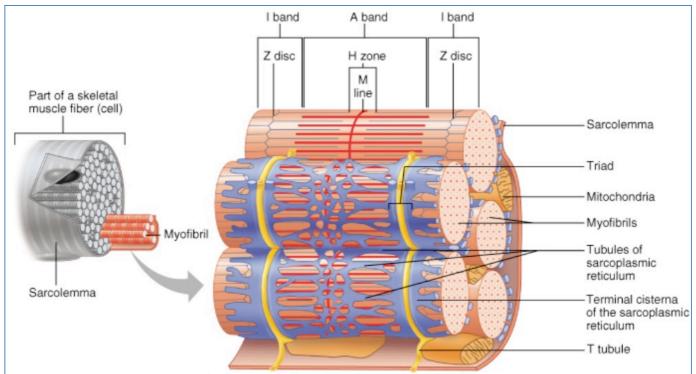
- Myofilaments
  - Contractile Proteins:
    - Actin (Thin)
      - Myosin (Thick)
  - **Z-Disc** anchors sarcomeres together.
    - Ensures whole cell contraction.



# • Myofibrils

- Contractile *Organelles*:
- Sarcomeres  $\rightarrow$  striped appearance
  - Z-Disc → Z-Disc
    - Mid I-Band → Mid I-Band



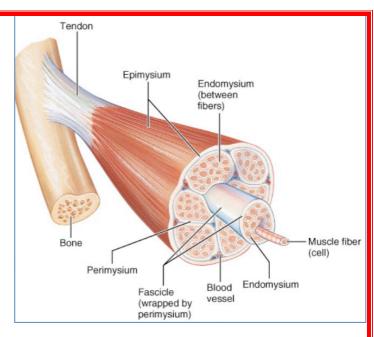


### • Muscle Fibres (cells)

- o Contractile Cells
- o Sarcolemma (plasma membrane)
  - Transverse ('T') Tubules
    - Perpendicular Invaginations of the sarcolemma (PM)
    - Runs between paired terminal cisterna of Sarcoplasmic Reticulum
    - Conducts impulses from sarcolemma deep into cell for mass myofibril contraction.
- Sarcoplasm (cytoplasm large glucose stores + myoglobin oxygen supply)
- Sarcoplasmic Reticulum
  - Tubular network
  - Stores & Regulates intracellular Ca<sup>+</sup> levels necessary for contractions.
  - Surrounds each myofibril (contractile organelle)
  - Terminal Cisternae of the SR butt up on either side of the T-Tubules  $\rightarrow$  forms a 'Triad'
  - Triads occur at every I.Band–A.Band junction.
- o Abundant Mitochondrion energy

### Endomysium

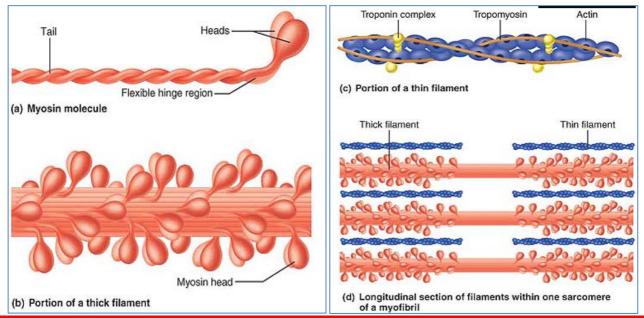
- o Connective Tissue
- Wraps single muscle fibres (cells)






### Muscle Fascicles

• Bundles of muscle fibres (cells)


# • Perimysium

- o Connective Tissue
- Wraps Fascicles
- Single Muscle
  - Muscle as a whole eg. The bicep.
- Epimysium
  - Connective Tissue
  - Wraps whole muscle.
- Tendons
  - A fusing together of all connective tissue layers.
  - $\circ$  Connects muscle to bone

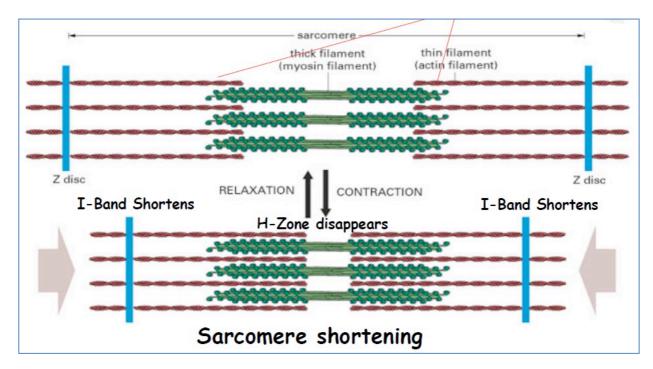


# **Sliding Filament Theory:**

- **Sarcomere** is the functional unit of muscles.
- Myo-Filaments (Actin & Myosin) slide past each other
  - Actin (Thin)
    - Globular Actin:
      - Kidney-shaped polypeptide subunits intertwined  $\rightarrow$  double helix.
      - Bear the active sites  $\rightarrow$  myosin heads attach to during contraction.
    - Tropomyosin 2 strands that spiral along the actin.
      - Stiffens the actin filament
      - Blocks myosin binding sites in relaxed muscle so myosin heads can't bind to the actin
    - Troponin:
      - 3 polypeptide complex.
      - Binds to tropomyosin
      - Binds Ca<sup>+</sup>
  - o Myosin (Thick)
    - Tails:
      - Rodlike & helical
      - Start at the 'M-line'.
      - Each ends with a 2 flexible hinges supporting a pair of globular heads.
    - Heads:
      - Form 'Cross bridges' link thin & thick filaments during contraction.
      - Contain ATPases to generate energy for contraction.

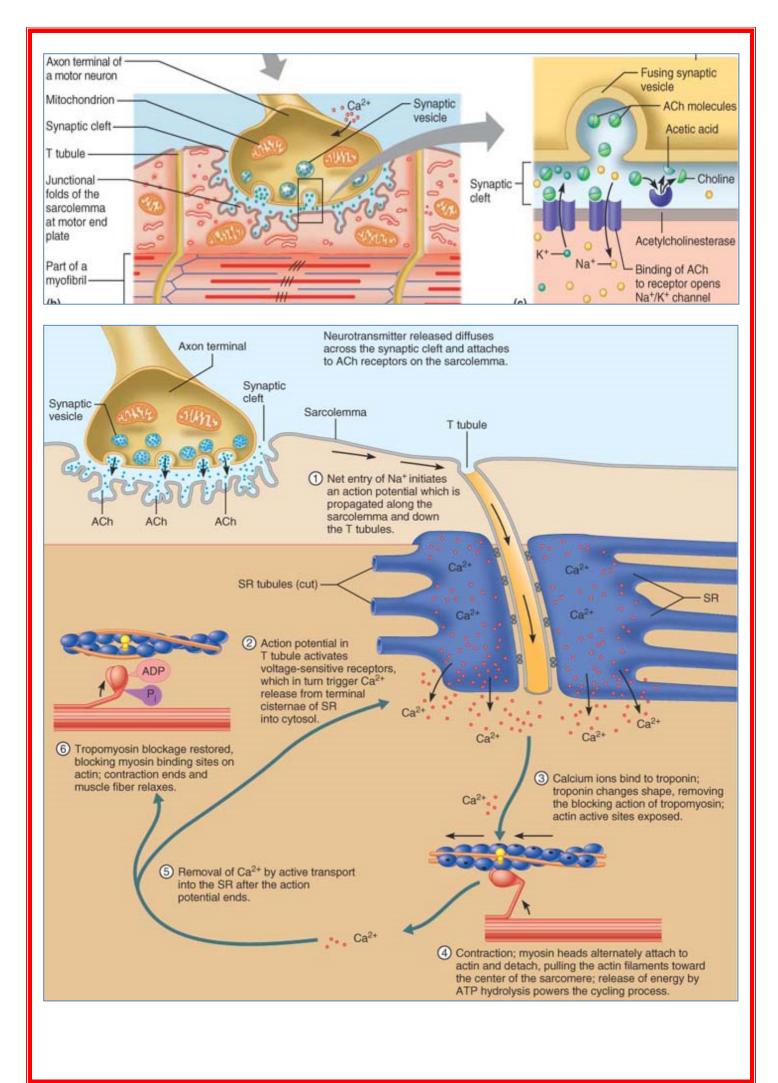


### • When relaxed


• Thick & thin filaments only overlap at the ends of the A.Band.

### • When stimulated

- (by nervous system)
- $\circ$   $\;$  Myosin heads latch to myosin binding sites on actin


### $\circ \quad \text{Form } \textbf{cross bridges}$

- Formed & broken many times in a contraction
- Act like tiny ratchets
- Generate tension
- Propel thin filaments toward centre of sarcomere.



### Events @ Neuromuscular Junction:

- A somatic neuron's axon divides profusely as it enters the muscle it serves.
- Each axon results in several neuromuscular junctions with single muscle fibres.
- Each muscle fibre has only one neuromuscular junction @ approx midway along its length.
- Events:
  - o Nerve impulse reaches axon terminal
  - Voltage-gated Ca channels open.
  - Ca diffuses into axon terminal
  - Causes vesicles of ACh to be exocytosed into synaptic cleft.
  - o ACh binds to receptors on sarcolemma
  - Initiates action potential along muscle cell membrane.
  - $\circ$  ACh is swiftly broken down by ACh-esterase  $\rightarrow$  allows quick successive stimuli.
  - Action potential propagates along sarcolemma & down T-Tubules.
  - $\circ$  Action potential causes **terminal cisternae** to **release Ca**<sup>+</sup> into the sarcoplasm.
  - Ca<sup>+</sup> binds to troponin  $\rightarrow$  removes tropomyosin.
  - Myosin heads attach & pull thin filaments towards centre of sarcomere.
  - Ca<sup>+</sup> actively reabsorbed by Sarcoplasmic Reticulum
  - o Troponin-Tropomyosin Complex is re-established
  - Cross-Bridging ceases



### **Stages of Sliding Filament Theory:**

- NB: This cycle may repeat a few hundred times/second.
- Cycle is repeated over & over in the presence of Calcium and ATP.
- Rest (No crossbridges)
  - Low intracellular Calcium levels.
  - Myosin-binding sites are physically blocked by tropomyosin.
  - Muscle is relaxed
  - Actin & myosin uncoupled
  - Ca<sup>2+</sup> stored in sarcoplasmic reticulum

# 1. Excitation-CrossBridge Formation (Ach $\rightarrow$ Ca<sup>2+</sup>)

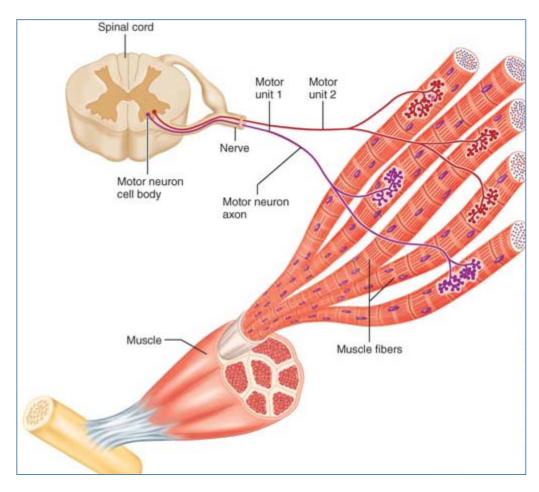
- a. Nerve impulse
- b. Ca<sup>2+</sup> released from Sarcoplasmic Reticulum
- c.  $Ca^{2+}$  binds troponin  $\rightarrow$  tropomyosin releases binding sites on actin.
- d. Conformational change exposes myosin binding sites
- e. Myosin-Actin cross-bridges are formed ('Charged')
- f. Formation of actomyosin

# 2. Power-Stroke (Sliding, shortening & tension)

- a. As myosin head binds to actin, P<sub>i</sub> is released (exothermically)
- b. Myosin head changes from its high-energy shape to its bent, low-energy shape.
- c. Myosin pivots about 70<sup>o</sup>.
- d. Muscle shortens
- e. Force developed

# 3. Cross-Bridge Detatchment(Breaking of old bond + New ATP

- a. New ATP binds to myosin head
- b. Actin-myosin cross bridge dissociates
- 4. "Cocking" of Myosin Head
  - a. ATPase in myosin head hydrolyses ATP  $\rightarrow$  ADP + P<sub>i</sub>
  - b. Harnesses the potential energy for the next Cross-Bridge formation.
  - c. Myosin head changes to its prestrike, high-energy (cocked) position.


# • (Active [requires ATP] Ca<sup>2+</sup> re-uptake by Sarcoplasmic Reticulum)

- Nerve impulse ceases
- Ca<sup>2+</sup> removed by Sarcoplasmic Reticulum's **ATP-Ca<sup>2+</sup> Pump.**
- Muscle returns to resting state



# The Motor Unit:

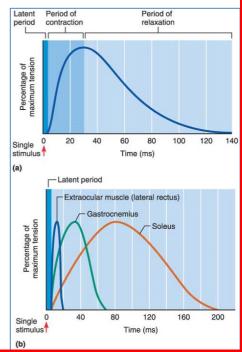
- = A motor neuron and all the muscle fibres it supplies.
- The number of fibres per motor unit may be anywhere from 4 a few hundred.
- Fine control muscles (fingers & eyes) have small motor units. (ie. Many nerves/entire muscle)
- Large, weight-bearing muscles have large motor units. (ie. Few nerves/entire muscle)
- Purpose of motor units is to be able to create different strengths of contraction in a muscle.



# The Muscle Twitch:

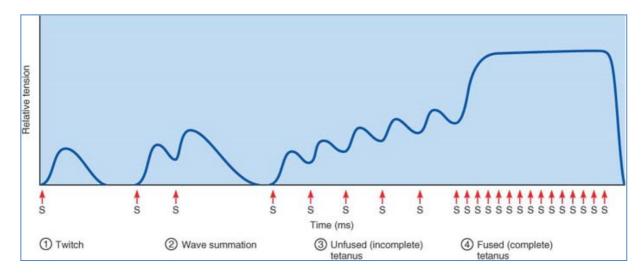
- = The response of a motor unit to a single action potential of its motor neuron.
- Muscle fibres contract quickly and then relax.
- Twitch contractions of some muscles are rapid & short (eyes) while others are slow and contract for longer.
- 3 Periods:

#### • Latent Period:


- First few milliseconds between stimulation and actually generating tension
- The time when coupling is occurring

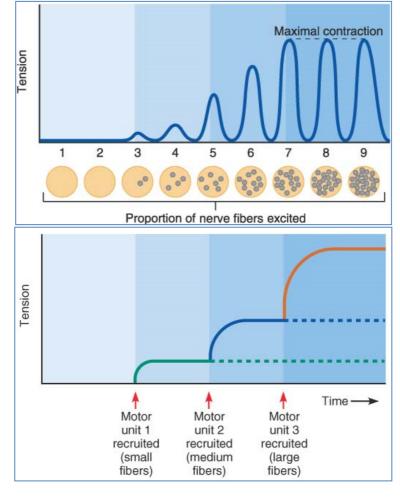
#### • Period of Contraction:

- When cross bridges are active
- From onset to peak tension
- Lasts 10-100ms


#### • Period of Relaxation:

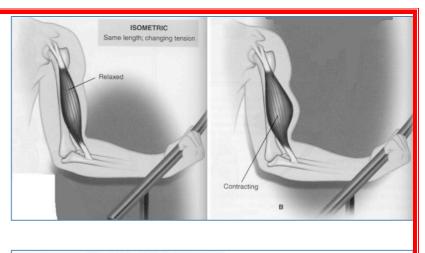
- Ca<sup>+</sup> reuptake into SR
- Muscle tension decreases to zero.




# Graded Muscle Responses:

- Healthy muscle contractions are smooth & vary in strength in different situations.
- These variations are known as 'Graded Muscle Responses'.
- Muscle contraction can be 'graded' in 2 ways:
  - Stimulation Frequency:
    - For **smoothness** of contraction.
    - Increasing the firing rate of motor neurons
    - Quick successive stimuli can cause summation of twitches.




# • Stronger Stimuli (Motor Unit Recruitment):

- For **strength** of contraction.
- Controlled by multiple motor unit summation
- Neural activation of an increasingly large number of motor units serving the muscle.



# **Types of Muscle Activation:**

- Isometric
  - Constant Force
  - o Unchanged muscle length
  - Ie. Static compression



- Isotonic
  - Constant Force (tone)
  - Constant Tension (tone)
  - Changes in muscle length:
  - Concentric
    - Shortening Muscle
    - Eg. Bicep curl (on the way up)
  - Eccentric
    - Elongating Muscle
    - Eg. Bicep curl (on the way down)

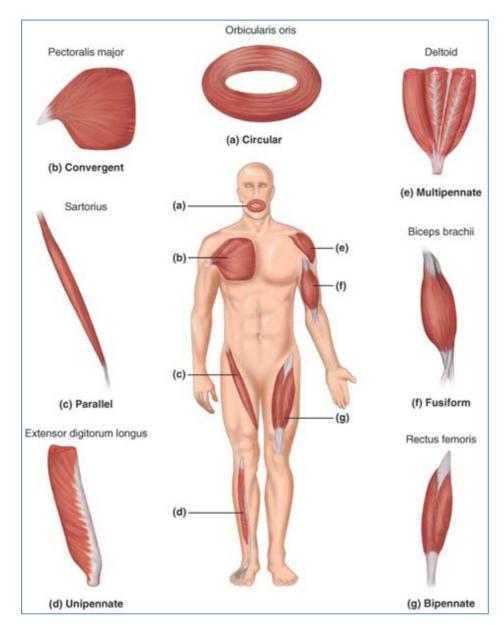
#### **Muscle Attatchments:**

- Direct
  - o Muscle joins to insertion directly
  - o More powerful but more fragile
  - Requires a large space
- Indirect
  - Muscle joints to insertion via tendon
  - Requires less space good for dexterity in fingers

#### Muscle Nomenclature:

- Origin
  - Attachment to the immovable bone
  - Usually proximal (towards centre)
- Insertion
  - o Attachment to the moveable bone
  - o Usually distal (away from centre)
- Prime Action
  - $\circ$  Stationary origin
  - o Movement of insertion
  - Eg. Bicep curl
- **Reverse Action** 
  - $\circ \quad \text{Stationary insertion} \quad$
  - $\circ \quad \text{Movement of origin} \\$
  - $\circ$  Eg. Chin-up




ISOTONIC

#### **Muscle Morphology:**

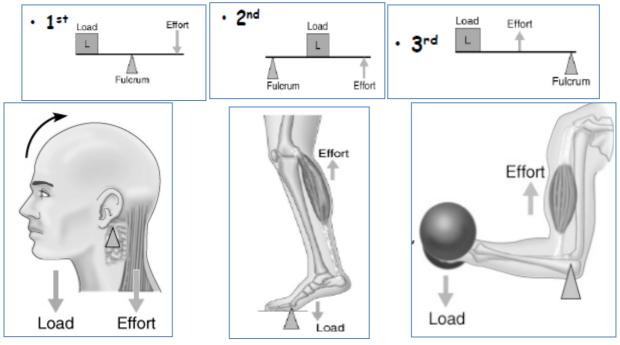
- Arrangement of Fascicles:
  - $\circ \quad \text{Determines range of motion}$
  - Determines power
  - o Parallel
    - Fascicles run parallel to the long axis of muscles
    - Large Range
    - Less Power
    - Either strap-like or spindle-shaped:
    - Some books classify spindle-shaped parallel muscles as: Fusiform

#### o Pennate

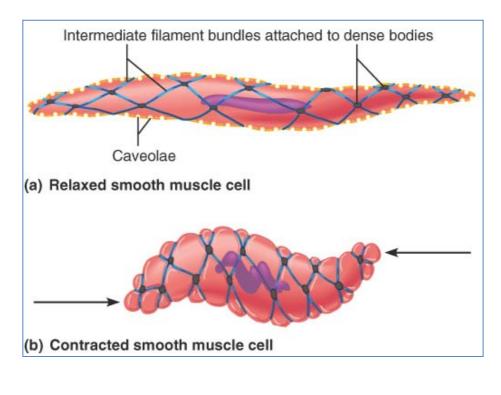
- Short fibres attach obliquely to a central tendon running the length of the muscle.
- High Power
- Less Range
- Either: Uni, Bi or Multi.
- Convergent
  - Broad origin
  - Power & Range
  - Fascicles converge to a single tendon of insertion.
- Circular
  - Fascicles arranged in concentric rings
  - External body openings (mouth, eyes, external anal sphincter)



# **Components of Levers:**


- Lever
- Fulcrum
- Effort
- Load

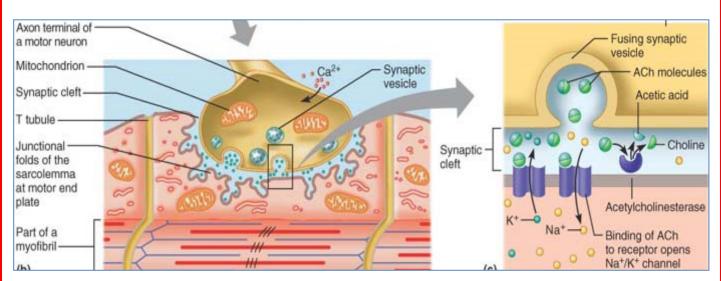
Lever Systems:


- Power Advantage
- Speed Advantage

Lever Classes:

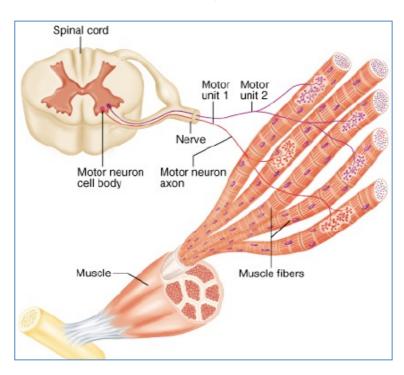
- 1<sup>st</sup>. No Advantage
- 2<sup>nd</sup>. Mechanical Advantage
- 3<sup>rd</sup>. Mechanical Disadvantage




# **Contraction of Smooth Muscle:**



# The Nerve-Muscle Interface (Efferent & Afferent)

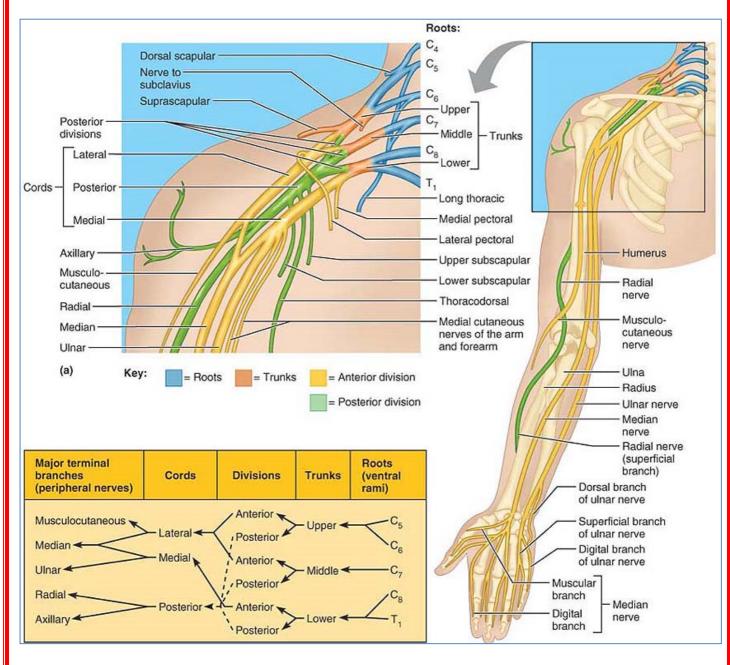

#### **Revision from last week:**

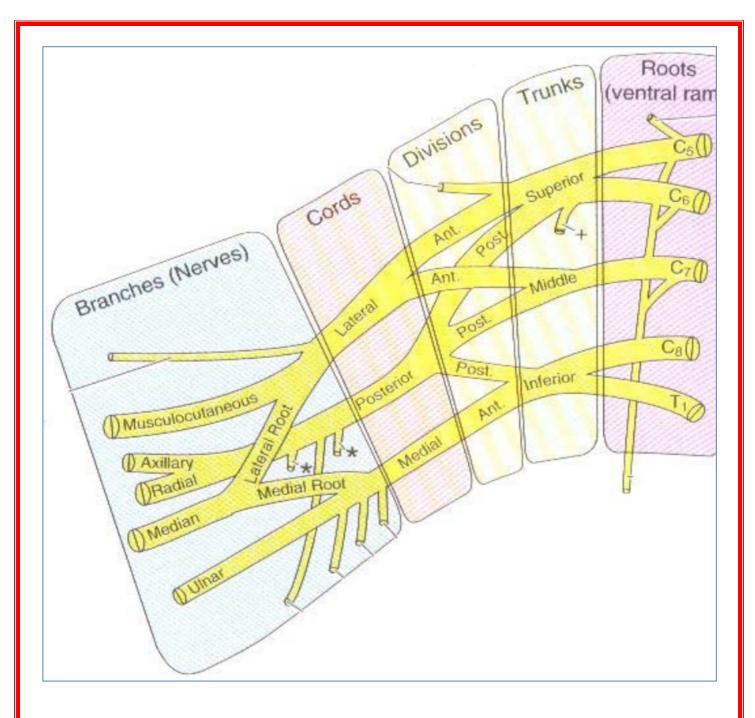
- Motor Neuron
  - Cell bodies in the ventral horns of the spinal cord
  - Neuromuscular Junction
    - $\circ$  Junction (synapse) between terminal parts of nerve & muscle fibres
    - o Nerve terminals contain synaptic vesicles of acetylcholine
    - o Motor Endplate highly convoluted post-synaptic membrane
      - Site of neurotransmitter (ligand) gated receptors.
    - $\circ$  ACh causes depolarisation of muscle Excitatory stimulates contraction
    - ACh broken down by acetylcholinesterase.



#### • Motor Unit

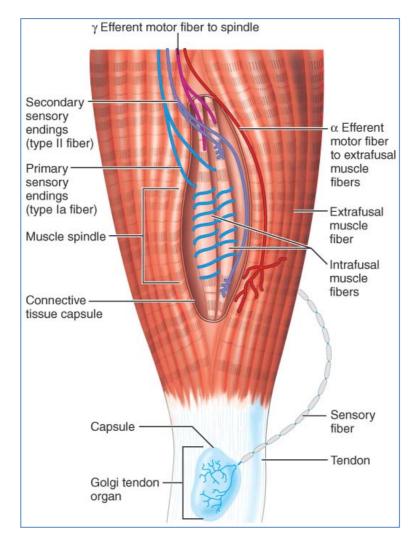
• The number of muscle fibres innervated by a single motor nerve.





# **Requirements for Proper Muscle Function:**

- Rapid Action Potential see earlier notes: Excitable Membranes/Action Potentials
- Input
- Sensory Feedback
- Muscle Tone

## **Peripheral Nerves:**


- Motor Fibres
- Sensory Fibres
- May form a Plexus:
  - o Network of nerve fibres
  - o Innervate limbs
    - Brachial
    - Lumbo-Sacral
  - o Allows for well organised movements
  - $\circ$   $\;$  Each limb receives nervous supply from more than one spinal nerve.
    - Provides backup innervation if some spinal fibres are damaged.
  - o Brachial Plexus:

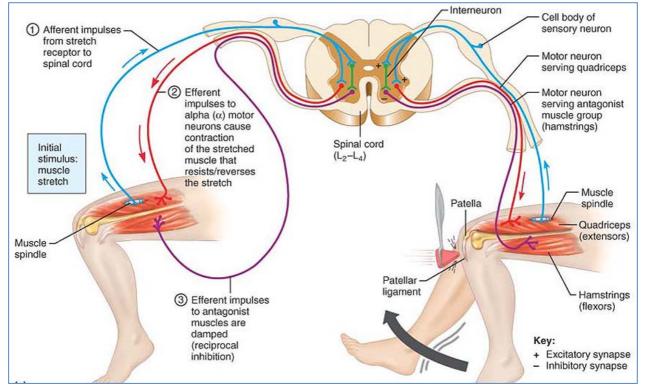




# **Muscle Sensory Feedback**

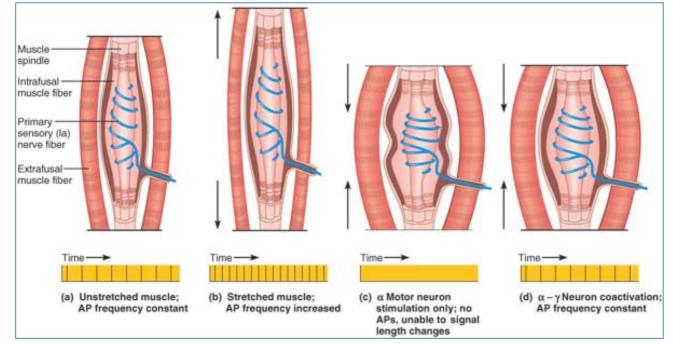
- Muscles need to 'know what they are doing'
  - o Tension...and....
  - Length of the muscle.
- How? Through "Proprioception" (via proprioceptors)
  - $\circ$   $\;$  Awareness of body positioning in space.
  - $\circ \quad \mbox{Mediated by Cerebral Cortex \& Cerebellum}$
- Proprioceptors: (Muscle Spindles & Golgi Tendon Organs)




- Muscle Spindles:
  - Encapsulated Proprio-Mechano-Receptors
  - Located inside muscle amongst normal (extrafusal) muscle fibres.
  - Intrafusal Muscle Fibres ("inside spindle")
    - Receptive Central Region:
      - o Receptive
      - $\circ$  Non-contractile  $\rightarrow$  Lack myofilaments
      - Wrapped by **primary** afferent endings of large **type la** sensory fibres:
        - Monitor rate & degree of stretch.
      - Receptive Spindle Ends:

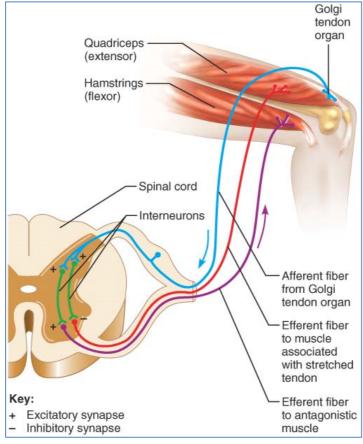
0

- o Receptive
  - Wrapped by **secondary** afferent endings of small **type II** sensory fibres:
    - Monitor degree of stretch only.
- Distal Contractile Spindle Ends:
  - Contractile →Contain myofilaments
  - ο Innervated by **gamma (γ) efferent fibres** originate in ventral horn.
  - Maintain **spindle sensitivity.**


#### The Stretch Reflex:

- 1. Spindle activated by stretch
- 2. Types Ia & II sensory fibres transmit impulses to spinal cord.
- 3. Sensory fibres synapse with  $\alpha$ -Motor-Neurons in spinal cord
- 4. Transmits action potential to muscle
- 5. Contracts extrafusal fibres of the stretched muscle
- 6. Prevents further stretching of muscle
- 7. Also inhibits antagonistic muscles  $\rightarrow$  Reciprocal Inhibition




#### Adjusting Muscle Spindle Sensitivity:

- Muscle spindles require a certain tension to work properly.
- If intrafusal fibres didn't contract with the extrafusal fibres during muscle contraction, the spindles would go slack & cease generating action potentials.
- α-γ Coactivation prevents this by sending voluntary contractile action potentials to the intrafusal fibres as well as the extrafusal fibres.
- Maintains spindle tension (and therefore its sensitivity)

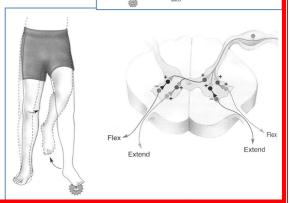


# o Golgi Tendon Organs:

- Encapsulated Proprio-Mechano-Receptors
- Innervated by type Ib afferent fibres
- In tendons connecting to bone
- Monitor muscle tension
- Inhibits contraction of muscle when tension is too great Golgi Tendon Reflex:
  - When tension reaches a threshold, Golgi tendon organs are activated.
  - Afferent impulses transmitted to spinal cord
  - Contracting muscle is relaxed + Antagonist muscle is contracted.



#### • Cerebral Cortex & Cerebellum


- Integrates Afferent Input
- Fine-tunes motor outputs
- Subconscious level

# **Flexor Reflex:**

- Painful cutaneous stimuli of the limbs causes withdrawal from the stimulus.
- Polysynaptic contracts & relaxes multiple different muscles.

# Crossed Extensor Reflex:

- Painful cutaneous stimuli of a limb causes withdrawal of that limb and extension of the opposite limb.
- Information crosses over to opposite side of spinal cord → excites extensor muscles of opposite limb.



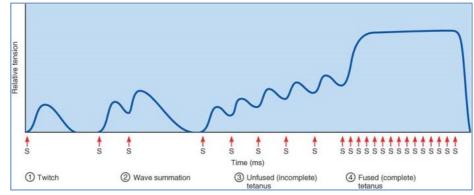
#### **Muscle Tone:**

•

- Sustained partial contraction exhibited in 'relaxed' muscles.
  - In response to stretch receptors
- Keeps muscle poised & ready
- Keeps muscle healthy
- Maintains posture and stabilises joints.

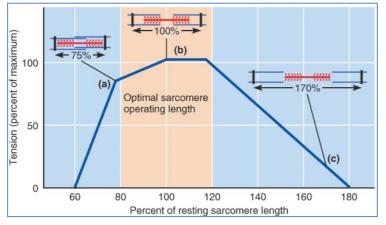
#### **Determinants of Contractile Force:**

#### • Number of Muscle Fibres Stimulated:


- $\circ$   $\;$  The more motor units recruited, the greater the force.
- $\circ$   $\;$   $\;$  The more muscle fibres recruited, the greater the force.

#### • Size of Muscle Fibres Stimulated:

- Proportional to cross-sectional area
- $\circ$  The larger the entire muscle  $\rightarrow$  greater the force
- The larger the muscle fibre  $\rightarrow$  greater the force.
- Muscle building causes *hypertrophy* of muscle fibres (cells).


#### • Frequency of Stimulation:

- Wave summation of twitches
- Cytosolic Ca<sup>2+</sup> rises contractile force increases
- Highest frequency: **Tetanus.**



#### • Degree of Muscle Stretch:

• Optimal: when all myosin heads can form cross-bridges.



#### • Muscle Fibre Type:

- White:
  - Anaerobic
  - Larger cross-sectional area
  - Higher force generators
- o Red
  - Aerobic
  - Many mitochondria
  - Less force generated

# The Structure of the Nervous System

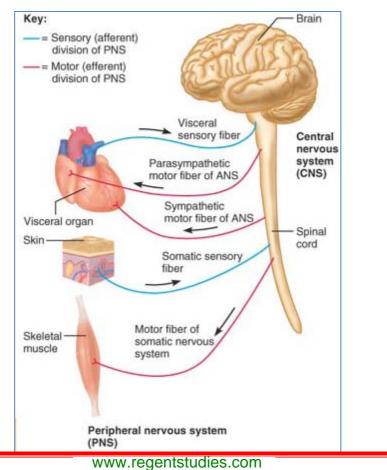
# The Nervous System - Overview:

## Macro Structures:

0

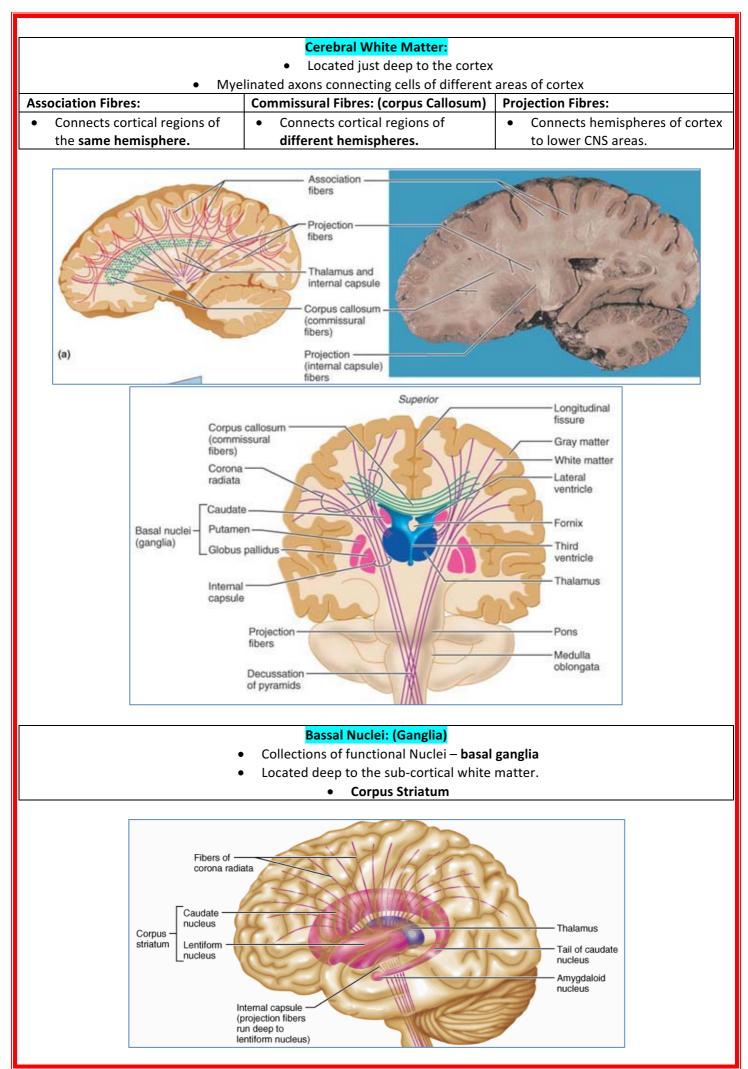
- o Brain
- Spinal Chord
- Peripheral Nerves
  - Sense Organs
    - Eyes
    - Ears
    - Tongue
    - Olfactory bulbs
    - Skin

# • Functions:


- Detection of stimuli (external/internal)
- Response to stimuli
- Coordinates activity of other organs & systems

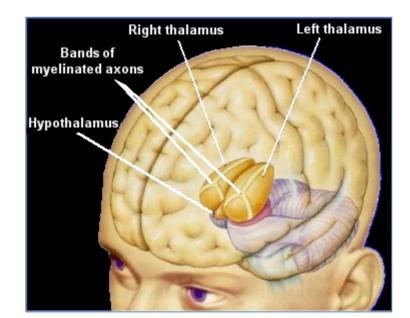
# **Divisions of Nervous System:**

# • <u>Central Nervous System (the "CPU" & "Motherboard")</u>


- o Brain
- Spinal Cord
- Peripheral Nervous System (the "Cables")
  - Cranial Nerves & Spinal Nerves
  - o Communication between CNS & rest of body

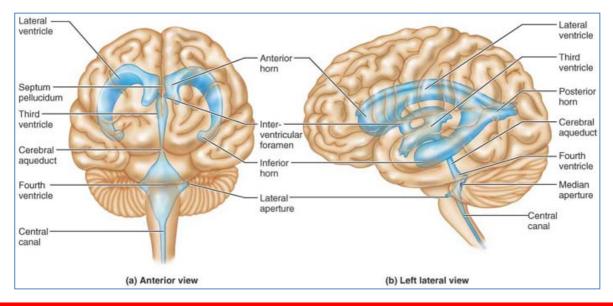
| Afferent / Sensory                      | Efferent / Motor    |                         |                        |
|-----------------------------------------|---------------------|-------------------------|------------------------|
| Somatic & Visceral Nerve Fibres.        | Somatic (Voluntary) | Autonomic (I            | nvoluntary)            |
| Conducts Impulses from receptors to CNS | Motor Function      | <b>Sympathetic</b>      | <b>Parasympathetic</b> |
|                                         |                     | Mobilises body systems. | Conserves Energy.      |
|                                         |                     | Fight / Flight Response | Housekeeping Duties    |




| • 83%                                                                                                                                                                                                                                                                                                                      | on (Cerebral Hemispher<br>of total brain mass<br>ked by elevated ridges o<br>e<br>Cerebral<br>• Superficial Lav                   | r <mark>es)</mark>                                                                                                                                                                                                                                   | Cerebral<br>hemisphere<br>Diencephalon<br>Cerebellum<br>Brain stem<br>• Midbrain<br>• Pons<br>• Medulla<br>oblongata |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Sulci: ("Furrows")                                                                                                                                                                                                                                                                                                         | Gyri: ("Twisters")                                                                                                                | Fissures:                                                                                                                                                                                                                                            | Lobes:                                                                                                               |
| <ul> <li>Shallow grooves on cerebrum<br/>surface</li> <li>Increases surface area</li> <li>Forms boundaries of different<br/>functional regions</li> <li>Central Sulcus separates<br/>frontal lobe from parietal lobe</li> <li>Lateral Sulcus separates<br/>temporal lobe from frontal &amp;<br/>parietal lobes.</li> </ul> | <ul> <li>Elevated ridges<br/>created by Sulci.</li> <li>Represent<br/>locations of<br/>specific functiona<br/>regions.</li> </ul> | <ul> <li>Deeper grooves on cerebrum<br/>surface</li> <li>Separate the lobes of the brain</li> <li>Longitudinal Fissure separates<br/>cerebral hemispheres</li> <li>Transverse Cerebral Fissure<br/>separates cerebrum from<br/>cerebellum</li> </ul> | <ul> <li>Frontal</li> <li>Parietal</li> <li>Temporal</li> <li>Occipital</li> </ul>                                   |
| Central sulcus<br>Precentral gyrus<br>Frontal lobe<br>(a)<br>Gyrus<br>Gyrus<br>Cortex<br>(gray matter)<br>Sulcus<br>White matter<br>(a deep sulcus)                                                                                                                                                                        | Transverse<br>cerebral fissure<br>Cerebellum<br>Pons<br>Medulla oblongata<br>Spinal cord<br>A                                     | Anterior<br>ongitudinal<br>ssure<br>rerebral veins<br>nd arteries<br>overed by<br>rachnoid<br>eft cerebral<br>emisphere<br>Dosterior                                                                                                                 | Frontal lobe<br>Parietal lobe<br>Right<br>cerebral<br>hemisphere<br>Occipital<br>lobe                                |

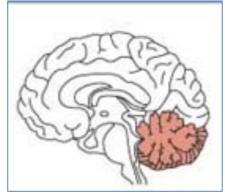
www.regentstudies.com




www.regentstudies.com

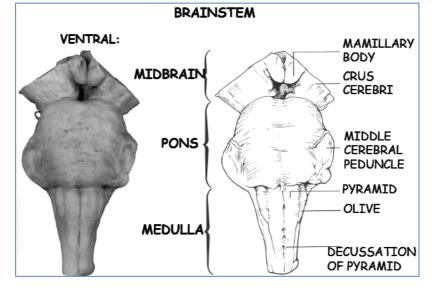
| <ul> <li>Diencephalon (grey matter superior to brainstem)</li> <li>Central core of forebrain</li> </ul>                                                                                              |                                                                                                                                                                                                                                                                                                                                          |                            |                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|--|
| Thalamus "Inner Room"                                                                                                                                                                                | <b>Hypothalamus</b>                                                                                                                                                                                                                                                                                                                      | <b>Posterior Pituitary</b> | <b>Epithalamus</b>                |  |
| <ul> <li>80% of Diencephalon</li> <li>The afferent gateway<br/>to the cerebral cortex</li> <li>Mediates sensation,<br/>motor activities,<br/>cortical arousal,<br/>learning &amp; memory.</li> </ul> | <ul> <li>Main visceral control center</li> <li>Maintains overall body homeostasis</li> <li>Controls Autonomic Nervous System</li> <li>Emotion</li> <li>Thermoregulation</li> <li>Nutrient uptake, hunger, sugar<br/>levels</li> <li>H<sub>2</sub>O balance &amp; thirst</li> <li>Sleeping cycles</li> <li>Endocrine functions</li> </ul> | • Endocrine<br>Functions   | • Also regulates sleeping cycles. |  |




# Ventricles

- Hollow ventricular chambers
- Continuous with one another
- Continuous with the central canal of the spinal cord.
- Continuous with the sub-arachnoid space surrounding the brain.
- Filled with cerebrospinal fluid
- Lined by ependymal cells




#### o Cerebellum

- Posterior to brainstem beneath occipital lobe
- Controls maintenance of balance, posture & muscle tone
- Coordinates movement



# o Brainstem

- Connects Diencephalon → Spinal Cord
- Integrates acquired information (central/peripheral)
- Monitors all brain outputs
- Processes automatic control systems
- Many of the cranial nerves originate here.
- 3 Parts:
  - Midbrain
  - Pons
  - Medulla Oblongata becomes the brainstem @ Foramen Magnum.



# Spinal Cord

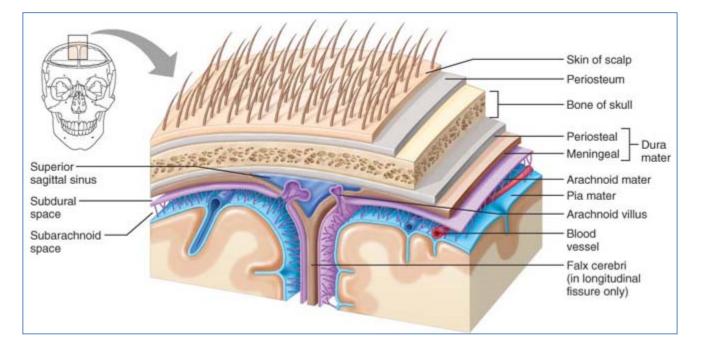
- Extends from Foramen Magnum
- $\circ$  Resides in the vertebral canal
- $\circ$  Bathed in cerebrospinal fluid
- Terminates at the 'conus medullaris' (cone of medulla) approx L1 in adults.
- Cauda Equina:
  - Nerve rootlets of lower-lumbar & sacral regions extend further down vertebral canal.
- Filum Terminale:
  - Conn. Tissue anchors Cauda Equina to the base of vertebral canal.

| Internal Structure:                                        | External Structure:                                          |
|------------------------------------------------------------|--------------------------------------------------------------|
| Grey Matter:                                               | Spinal Nerves:                                               |
| <ul> <li>All neuronal cell bodies</li> </ul>               | <ul> <li>Merging of the Dorsal &amp; Ventral root</li> </ul> |
| <ul> <li>2 Dorsal Horns</li> </ul>                         | fibres                                                       |
| <ul> <li>Nerve cells that receive sensory</li> </ul>       | <ul> <li>Carry mixed sensory &amp; motor info to</li> </ul>  |
| information from body                                      | relevant body area                                           |
| <ul> <li>Via the dorsal root fibres.</li> </ul>            | Branches of Spinal Nerves:                                   |
| <ul> <li>2 Ventral Horns</li> </ul>                        | <ul> <li>Ventral Rami: "ventral branch"</li> </ul>           |
| <ul> <li>Contain motor nerve cells</li> </ul>              | <ul> <li>Dorsal Rami: "dorsal branch"</li> </ul>             |
| <ul> <li>Cell axons leave through ventral</li> </ul>       | Sympathetic Chain                                            |
| root fibres.                                               | Sympathetic Ganglia:                                         |
| <ul> <li>Lateral Horns:</li> </ul>                         |                                                              |
| <ul> <li>Present in thoracic &amp; upper</li> </ul>        |                                                              |
| lumbar regions                                             |                                                              |
| <ul> <li>Autonomic motor nerves from</li> </ul>            |                                                              |
| sympathetic nervous system                                 |                                                              |
| <ul> <li>Exit spinal cord through the</li> </ul>           |                                                              |
| ventral roots                                              |                                                              |
| White Matter:                                              |                                                              |
| <ul> <li>Ascending and descending fibre tracts.</li> </ul> |                                                              |
|                                                            |                                                              |
| ~ = 20 1                                                   |                                                              |
|                                                            |                                                              |
| å NERVES                                                   |                                                              |
|                                                            |                                                              |
| 2 3                                                        |                                                              |
| THORACIC REGION                                            | AFFERENT /SENSORY NEURON                                     |
|                                                            | /                                                            |
| 9<br>9<br>10                                               |                                                              |
|                                                            | DORSAL RAMI                                                  |
|                                                            |                                                              |
| Conus Medullaris                                           |                                                              |
| Cauda Equina & NERVES                                      |                                                              |
|                                                            | SPINAL EFFERENT / MOTOR                                      |
| SACRAL REGION                                              | VENTRAL RAMI NERVE NEURON                                    |
| Filum Terminale                                            |                                                              |
|                                                            |                                                              |

1 1x COCCYGEAL NERVE

| nformation Pathways: Central -> Peripheral                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Somatic:                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| <ul> <li>Afferent (Sensory Info)         <ul> <li>Receptor cells in <u>periphery</u></li> <li>Info conveyed along peripheral axon → Soma (in dorsal root ganglion)</li> <li>Info conveyed along proximal axon → spinal cord (CNS)</li> <li>Info → ascending fibres (white matter) → brain for processing</li> </ul> </li> </ul> | <ul> <li>Efferent (Skeletal Muscle)         <ul> <li>Neuronal cell bodies in <u>ventral</u> horn of grey matter.</li> <li>Cell axon leaves spinal cord through ventral root → spinal nerve</li> <li>Axon flows out of Ventral Rami</li> <li>Directly innervates muscle @ neuromuscular junction</li> </ul> </li> </ul>                                                 |  |  |  |
| Visce                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Afferent (Sensory Info)                                                                                                                                                                                                                                                                                                         | Efferent (Smooth Muscle)                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| <ul> <li>Receptors in <u>viscera</u></li> <li>Info conveyed along peripheral axon → Soma (in dorsal root ganglion)</li> <li>Info conveyed along proximal axon → spinal cord (CNS)</li> <li>Info → ascending fibres (white matter) → brain for processing</li> </ul>                                                             | <ul> <li>Neuronal cell bodies in <u>lateral</u> horn of grey matter.</li> <li>Cell axon leaves spinal cord through ventral roo → spinal nerve</li> <li>Axon flows out of Ventral Rami</li> <li><u>Axon synapses with peripheral ganglia</u></li> <li>Peripheral ganglia innervates internal viscera:</li> <li>smooth muscle/glandular tissue/cardiac muscle</li> </ul> |  |  |  |
| Dorsal root<br>(sensory)<br>Dorsal root<br>ganglion<br>Somatic sensory neuron<br>Visceral sensory<br>neuron                                                                                                                                                                                                                     | orsal horn (interneurons)                                                                                                                                                                                                                                                                                                                                              |  |  |  |

Somatic motor neuron-


Spinal nerve

Ventral root (motor)

Ventral horn (motor neurons)

# **Protection of CNS:**

- Bone
  - o Skull
  - o Vertebra
- <u>3 Meningeal Layers:</u>
  - Dura Mater (brain only)
    - Thick, leathery film of Conn.Tiss.
    - Lines inside of bone of skull
  - Arachnoid ("spider") Mater
    - Thin, loose brain covering film.
    - Separated from Dura Mater by a serous cavity, the Subdural Space.
    - Underneath = subarachnoid space
    - Weblike extensions span this space, anchoring it to the underlying Pia Mater
  - o Pia Mater
    - Delicate Conn.Tiss.
    - Rich in capillaries
    - Clings tightly to brain even into sulci & fissures.
- <u>Cerebrospinal Fluid:</u>
  - Found in & around brain & spinal chord
  - o Forms a liquid cushion
  - o Gives buoyancy to CNS structures
  - o Adds nourishment (in addition to blood)

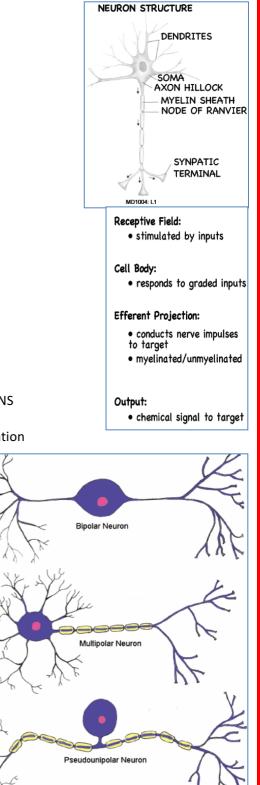


#### Blood-Brain Barrier:

- Maintains a stable environment for brain
- o In other body regions, concentrations of hormones/amino acids/ions are constantly changing.
- However, the brain is **absolutely** dependant on constant conditions therefore must be kept separate from the blood.
- How?:
  - Capillary endothelial cells seamlessly joined by tight junctions.
  - Selective passive diffusion of nutrients (glucose/essential amino acids/some electrolytes)
  - Bloodborne metabolic wastes/proteins/toxins/most drugs are denied entry.
  - Not only are some substances denied access, they are also actively removed.
- Ineffective against fats/fatty acids/oxygen/CO<sub>2</sub>/alcohol/nicotine/anaesthetics. diffuse across PM.

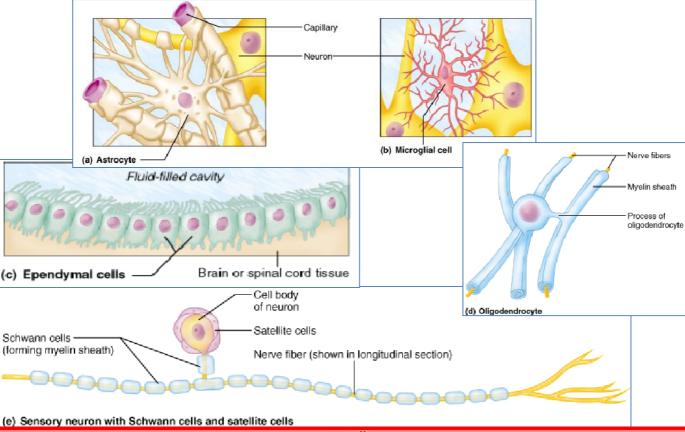
# The Musculo-Skeletal System

#### Introduction to the Nervous System


#### 2 Types of Cells:

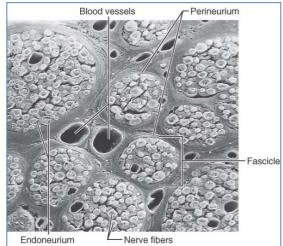
#### Neurons

- Basic functional unit
- o Impulse conduction
  - Salutatory (myelinated)
  - Continuous (unmyelinated)
- o Stimulate muscles & glands
- o 'Communication' cells of the NS
  - Afferent Incoming information (graded inputs)
    - Dendrites
    - Cell Body
  - Efferent Outgoing information (action potentials)
    - Axon
- Specialized Structures & Organelles:
  - Structures:
    - **Neurites:** Axon + Dendrites


• Branched axons = 'collaterals'

- Myelination:
  - Produced by Schwann cells in PNS
  - Produced by Oligodendrocytes in CNS
  - o Insulates axon
  - o Speeds up Action Potential Propagation
- Organelles:
  - Rough ER (nissl bodies): protein synthesis
  - Smooth ER: lipid synthesis
  - Golgi: Storage & transport of secretory products
- Types of Neurons:
  - Multipolar:
    - 99% of all neurons
    - Many dendrites
    - 1 myelinated axon
    - Pseudounipolar:
      - T-shaped
      - Receptive endings (not dendrites)
      - Long, myelinated axon
        - o Central end
        - o Peripheral end
          - Sensory receptors
  - Bipolar:
    - In Retina + Olfactory mucosa.
    - T-Shaped
    - Long Dendrite
    - Long Axon




# • Neuroglia (Glia)

- o Smaller support cells of NS
- o Outnumber neurons 10:1
- o Structural & mechanical support
- o Roles in maintaining homeostasis
- o Myelination
- Immune responses via phagocytosis.
- Types of neuroglia:
  - CNS:
    - Astrocytes
      - o Nutrient bridge between neuron & capillaries
      - o Guide migrating young neurons
      - Synapse formation
      - $\circ$  Mop up excess K<sup>+</sup> ions + neurotransmitters
      - Oligodendrocytes
        - Myelin formation in CNS
    - Microglia
      - Long thorny processes
      - Monitors neuron health
      - Senses damaged neurons
      - Migrates to damaged neuron
      - Phagocytoses microbes & debris (immune cells are denied access to CNS)
    - Ependymal Cells
      - Lines central cavities of brain + spinal chord
      - o Blood-brain barrier
      - o Beating cilia circulates cerebrospinal fluid
  - PNS:
    - Schwann Cells
      - Myelin Formation wrap around axon
      - o Regeneration of damaged neurons
    - Satellite cells
      - o Surround neuron bodies
      - Structure, nutritional support & protection.

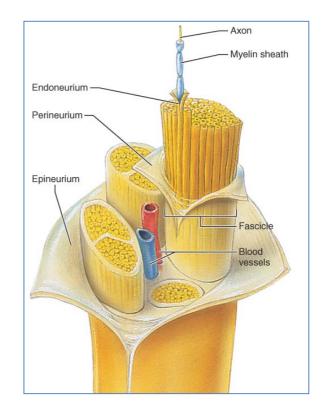


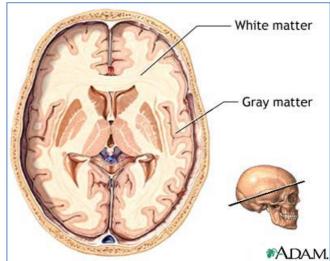
# **Connective Tissue Sheaths on Peripheral Nerves:**

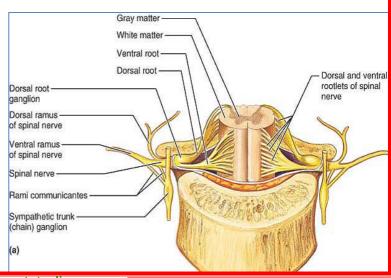
- Endoneurium
  - Delicate connective tissue layer
  - o Surrounds each axon
- Perineurium
  - Coarser connective tissue layer
  - o Bundles groups of fibres into fascicles
- Epineurium
  - Tight, fibrous sheath
  - Bundles fascicles into a single nerve.
  - Houses blood vessels



# Grey Matter & White Matter:

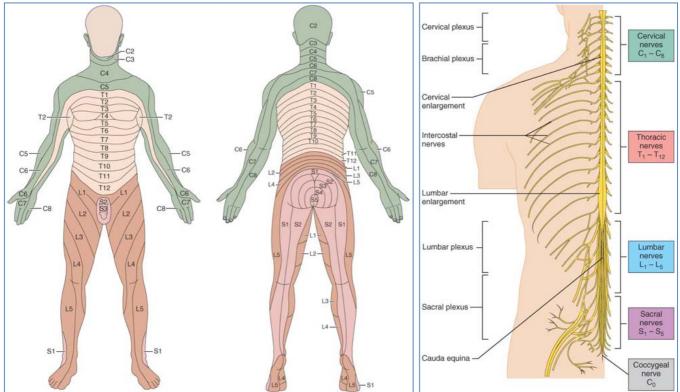

- Grey Matter
  - Neuron bodies (Soma)
  - Imbedded in neuroglial cells
  - o Eg:
- Cortex of Brain
- Centre of Spinal Chord
- Ganglia/nuclei


#### • White Matter


- o Neuron fibres (axons & dendrites
- White due to myelin
- o Eg:
- Peripheral Nerves & Plexuses
- Central fibre tracts

#### Ganglia

- Collections of neuron cell bodies in PNS
  - Afferent Spinal Nerves:
    - Cell bodies of sensory neurons
    - 'Dorsal root ganglion'
  - Efferent Spinal Nerves:
    - Cell bodies of autonomic nerve fibres
    - 'Sympathetic trunk ganglion'
  - In Central Nervous System:
    - Called: Basal Nuclei / Nuclei








# **Spinal Nerves:**

- Innervation of the Skin:
  - Dermatomes:
    - A portion of the mesoderm (skin, sensory receptors, sebaceous glands, blood vessels) innervated by the cutaneous branches of a single spinal nerve.

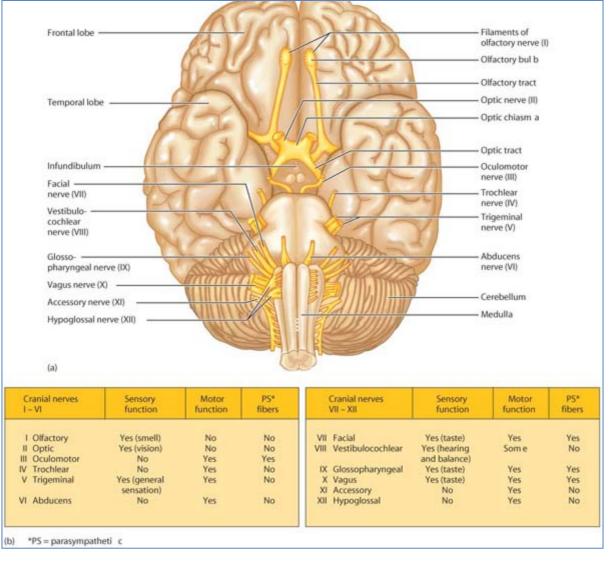


- Innervation of the Skeletal Muscles
  - Cervical Plexus
  - o Brachial Plexus
  - Lumbar-Sacral Plexus

## **Cranial Nerves:**

- I. Olfactory
  - Smell
- II. Optic

• Vision


- III. Oculomotor ('eye-mover')
  - Controls 4 of the 6 eye muscles.
- IV. Trochlear ('pulley')
  - Controls 1 of the extrinsic eye muscles pulley shaped
- V. Trigeminal
  - 3-branched sensory fibres to the face and mastication muscles
- VI. Abducens ('abduct')
  - Controls the extrinsic eye muscle that abducts the eyeball (lateral rotation)
- VII. <u>Facial</u>
- Facial expression
- VIII. Vestibulocochlear

.

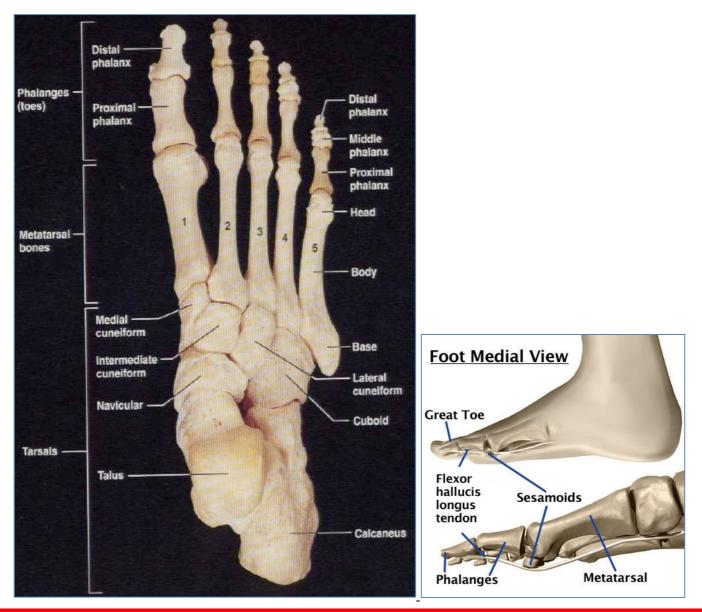
- Hearing and balance (formerly the auditory nerve)
- IX. Glossopharyngeal ('tongue & pharynx')
  - Tongue and pharynx
- X. Vagus ('the wanderer')
  - The only nerve to extend beyond the head and to the thorax & abdomen.
- XI. Accessory
  - An accessory part of the Vagus nerve

# XII. Hypoglossal ('under-tongue')

• Runs beneath the tongue to control tongue movement.

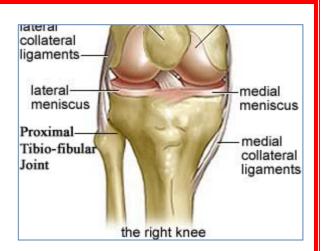


# Bones, Joints & Muscles of the Lower Leg & Foot


(NB: vasculation & innervation covered in wk 10s notes)

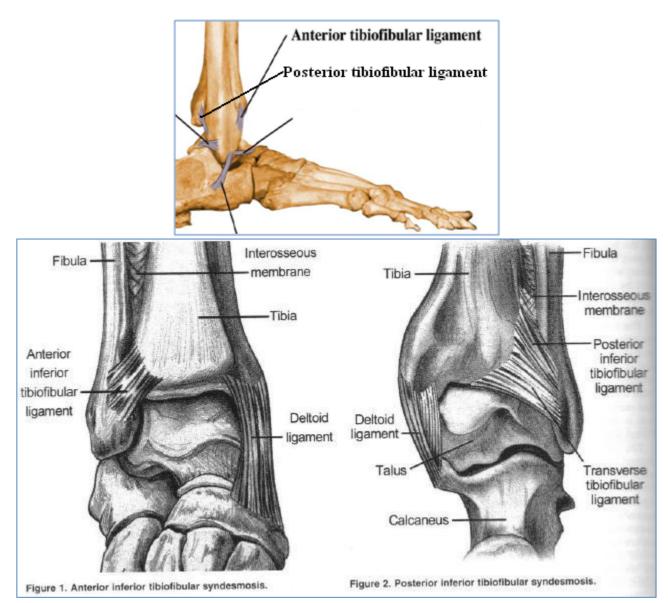
#### **Bones:**

- <u>Tibia:</u> See Last Week's Notes
- Fibula: See Last Week's Notes
- Foot:
  - o <u>7x Tarsals:</u>
    - Talus
    - Calcaneus
    - Navicular
    - Cuboid
    - Lateral Cuneiform
    - Intermediate Cuneiform
    - Medial Cuneiform
  - o <u>5x MetaTarsals:</u>
    - 1 → 5
    - Phalanges: ■ 1·


0

- 1: Proximal & Distal
- 2→5: Proximal, Middle & Distal
- o <u>2x Sesamoids:</u>
  - "Ball" of the foot.

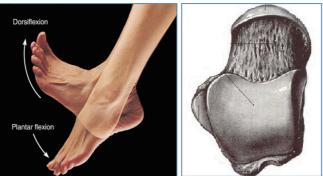



# Joints:

- (Proximal) Superior TibioFibular Joint:
  - Features:
    - Synovial Planar Joint
  - o Bones:
    - Tibia
    - Fibula
  - Ligaments:
    - TibioFibular Anterior &
    - TibioFibularPosterior:



# • (Distal) Inferior TibioFibular Joint:

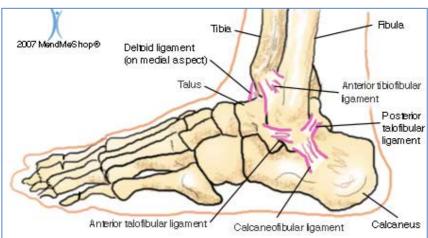

- Features:
  - Syndesmosis where the contiguous bony surfaces are united by an interosseous ligament
- o Bones:
  - Tibia Fibula
- Ligaments:
  - Interosseus Ligament
  - TibioFibular Anterior &
  - TibioFibularPosterior:
    - Both: Strong & Thick
      - Prevent separation of Tibia & Fibula

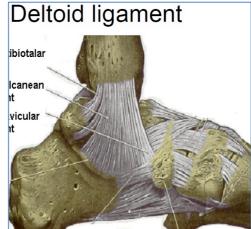


www.regentstudies.com

## • Ankle Joint (Talo-Crural):

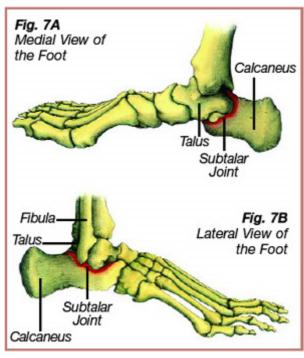
- Ie. "Talus-Leg"
- Features:
  - Synovial Hinge Joint
  - Good bony congruity
  - Stability comes from Very Strong Ligaments
  - Dorsiflexion/Plantarflexion
  - During dorsiflexion, the shape of the Trochlea of the Talus forces the Tibia & Fibula apart → tightens ligaments → most stable position.





# o Bones:

- Trochlea of Talus
- Distal end of Tibia
- Distal end of Fibula

# • Ligaments:


- Joint Capsule
- 3 Lateral Collaterals: (don't bother with names)
  - Posterior TaloFibular Ligament
  - Anterior TaloFibular Ligament
  - CalcaneoFibular Ligament
- Medial Collaterals:
  - Deltoid: 4 Parts: (don't bother with names)

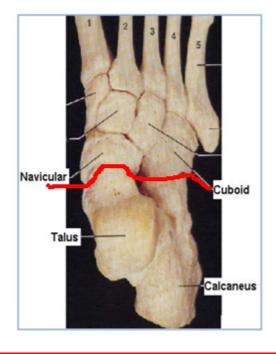




# Subtalar Joint:

- Features:
  - Synovial Planar Joint
  - Inversion
  - Eversion
- o Bones:
  - Talus
  - Calcaneus
- o Ligaments:






# • Transverse Tarsal Joint:

- Features:
  - Combo of: Talonavicular Joint & CalcaneoCuboid Joint

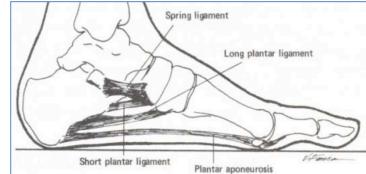
(both Synovial Planar)

- o Bones:
  - Talus + Navicular
  - Calcaneus + Cuboid

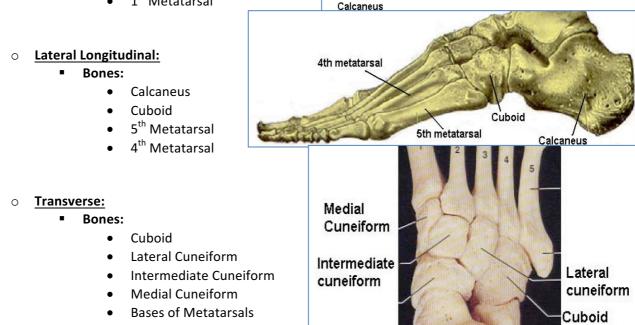


# Arches in Foot:

- Shock Absorption 0
- **Propulsion on Different Surfaces** 0
- Maintained by Plantar Ligaments: 0
  - "Spring" Ligament (aka: CalcaneoNavicular) Supports Medial Longitudinal Arch


Intermediate cuneiform

1st metatarsal


Navicular

Medial cuneiform

- Short Plantar Ligament
- Long Plantar Ligament
- Plantar Aponeurosis Deep Fascia of Foot Supports Longitudinal Arches



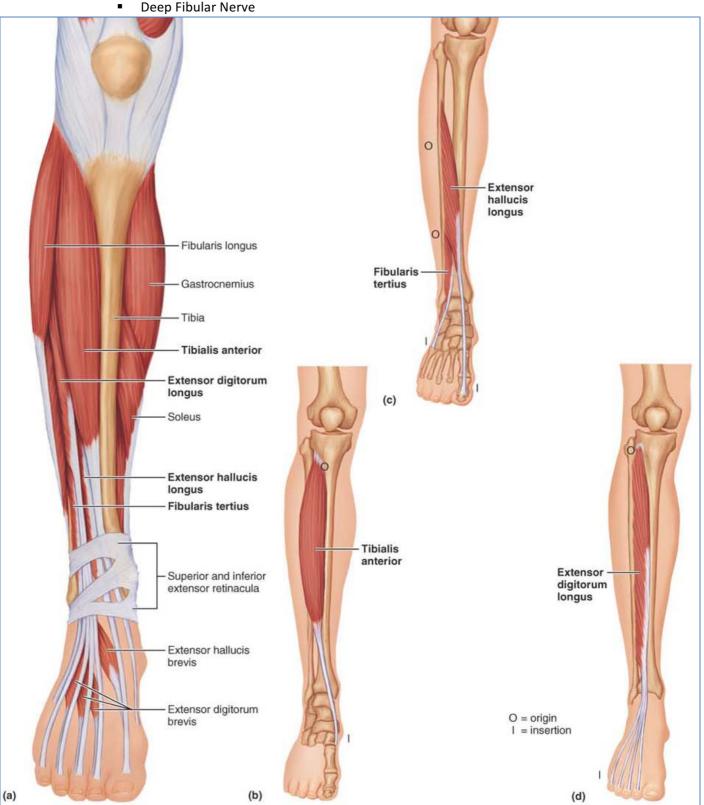
- Medial Longitudinal: (the highest) 0
  - **Bones:** 
    - Calcaneus .
    - Talus .
    - Navicular
    - **Medial Cuneiform**
    - Intermediate Cuneiform
    - 1<sup>st</sup> Metatarsal



Talus

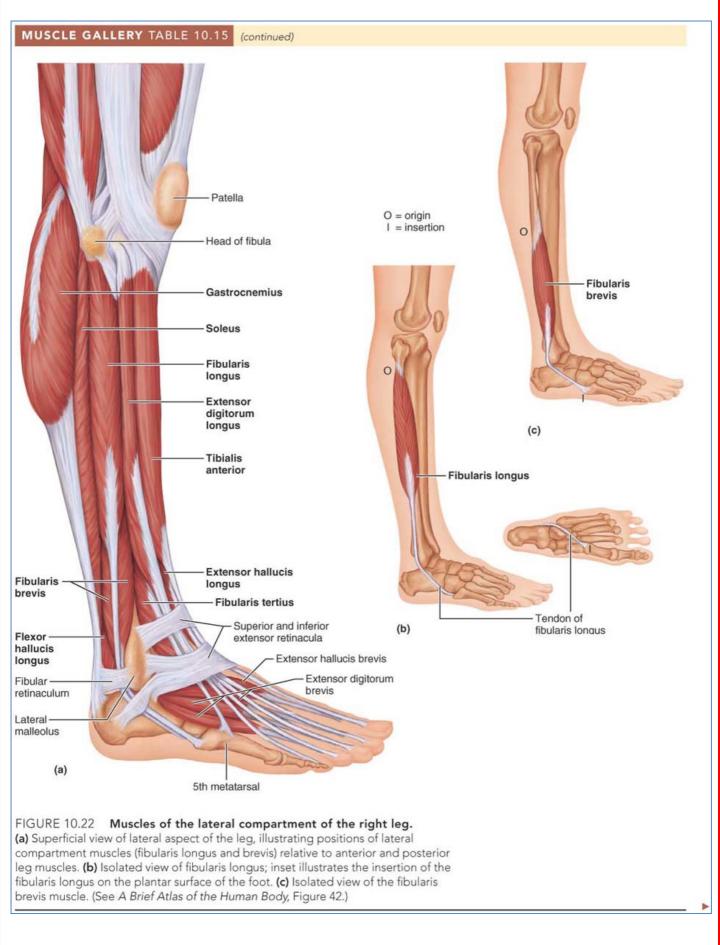
# **MetatarsoPhalangeal Joints:**

- **Features:** 0
  - Synovial Condyloid
  - Flexion/Extension
  - Abduction/Extension
  - Circumduction
- Interphalangeal Joints: (Proximal & Distal)
  - Features: 0
    - Synovial Hinge
    - Flexion/Extension


# Muscles – See Netter's Flash Cards:

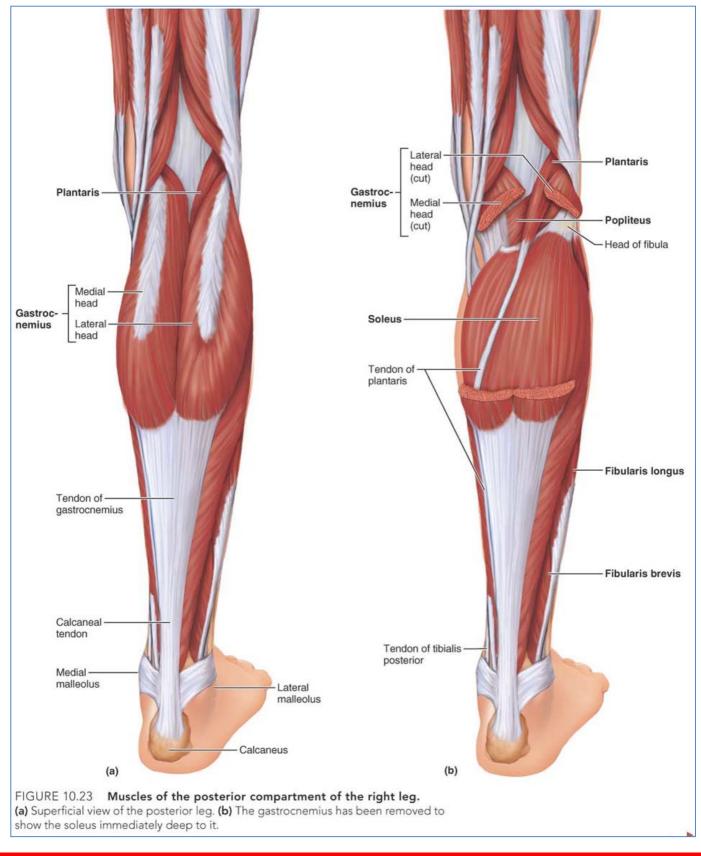
0

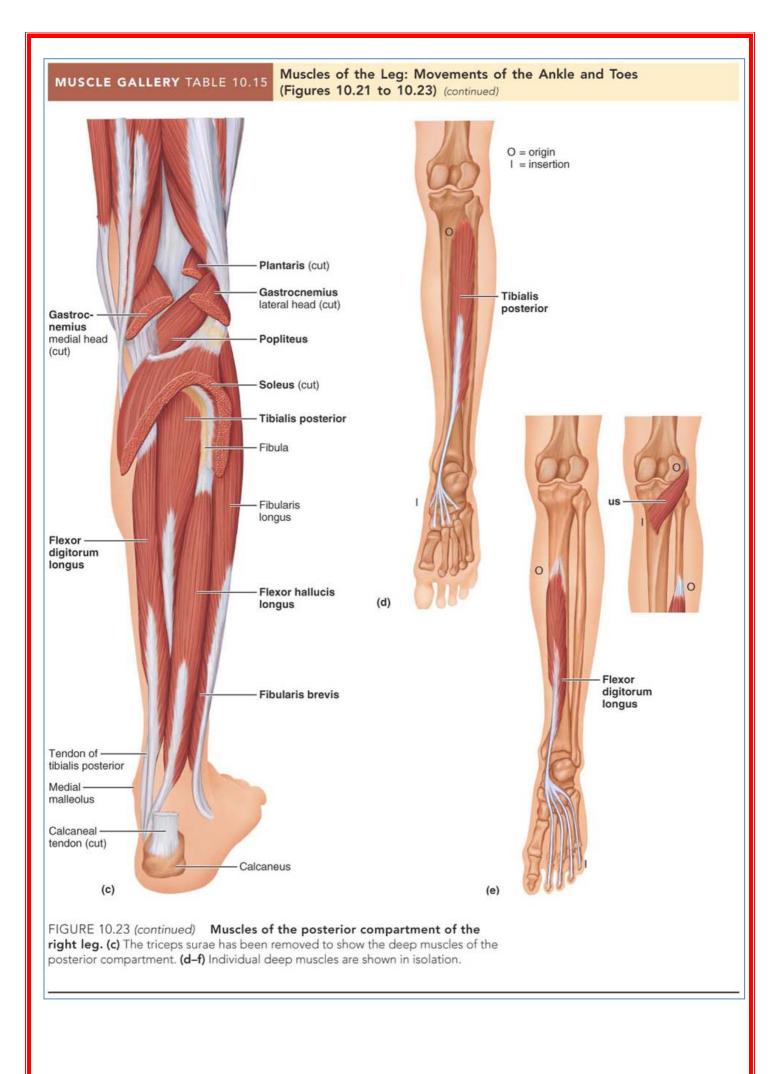
0


0

- **Anterior Compartment of Leg:** .
  - **Tibialis Anterior:** 
    - Dorsiflexion
    - **Deep Fibular Nerve**
  - **Extensor Hallucis Longus:** 
    - Extension of Big Toe
  - **Extensor Digitorum Longus:** 
    - Extension of Phalanges  $2 \rightarrow 5$
  - **Fibularis Tertius:** 0
    - Dorsiflexion
    - **Deep Fibular Nerve**



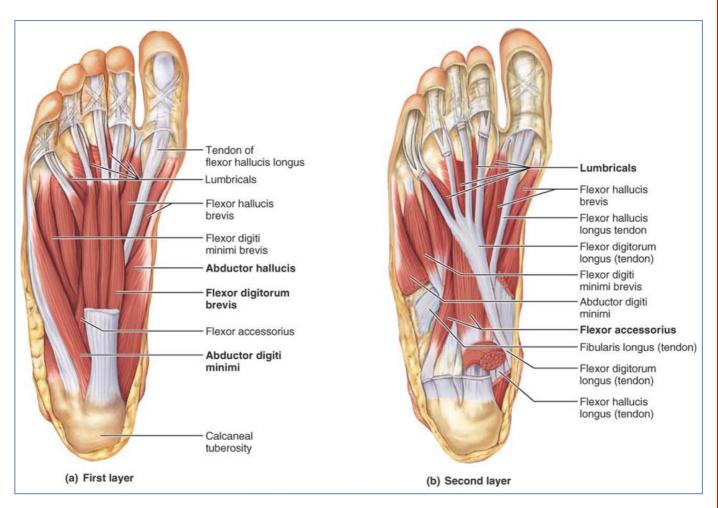

#### • Lateral Compartment of Leg:

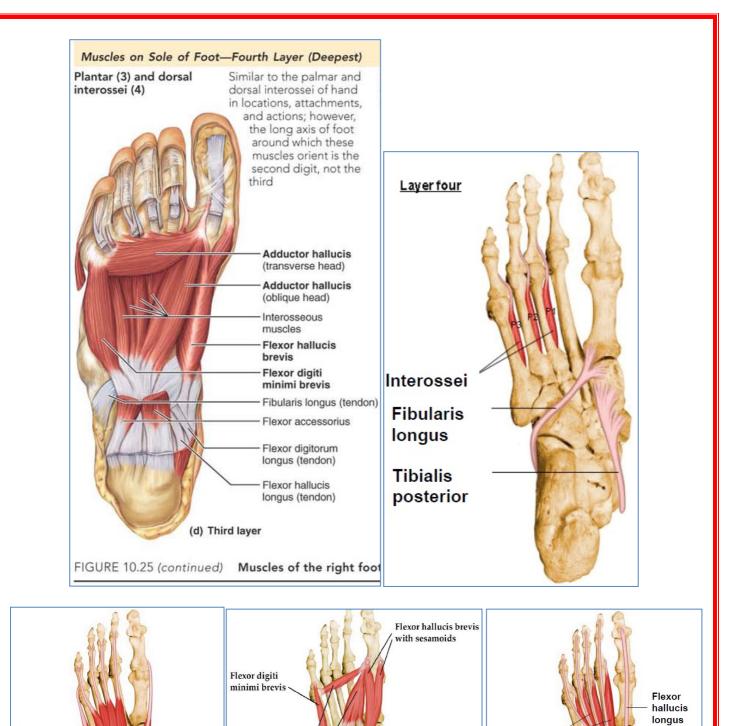

- Fibularis Longus
  - Fibularis Brevis



#### • <u>Posterior Compartment of Leg:</u>

- Triceps Surae:
  - Gastrocnemius Medial Head:
  - Gastrocnemius Lateral Head:
  - Soleus:
- Plantaris:
- Tibialis Posterior:
- Flexor Digitorum Longus:
- Flexor Hallucis Longus:




#### • Intrinsic Muscles of the Foot:

#### • Plantar Aspect:

- First Layer:
  - Abductor Hallucis
  - Flexor Digitorum Brevis
  - Abductor Digiti Minimi
  - Second Layer:
    - Flexor Hallucis Brevis
    - Quadratus Plantae
    - Flexor Digiti Minimi Brevis
    - Lumbricals
  - Third Layer:
    - Adductor Hallucis Transverse Head
    - Adductor Hallucis Oblique Head
  - Fourth Layer:
    - Plantar Interossei Abduct Toes





Lumbricals

Quadratus

plantae

Flexor

longus

digitorum

Adductor hallucis m.

transverse head

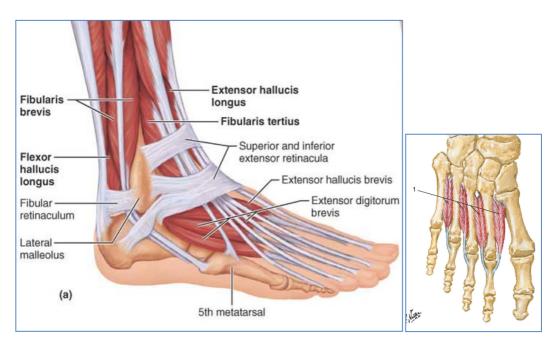
oblique head

Abductor

hallucis

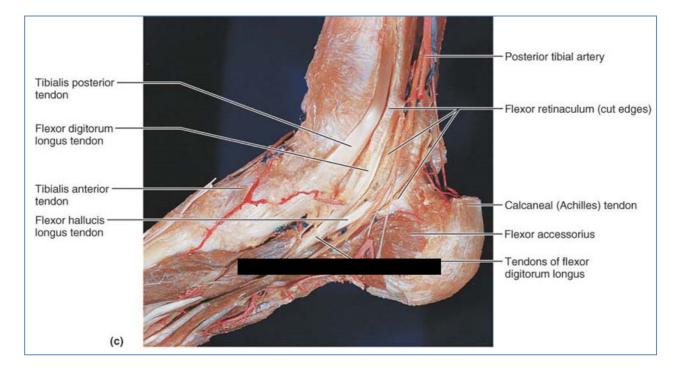
Flexor

brevis


digiti

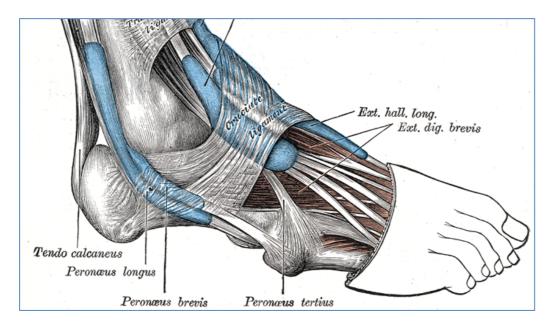
minimi

digitorum


Abductor

- Dorsal Aspect:
  - First Layer:
    - Extensor Hallucis Brevis
    - Extensor Digitorum Brevis
    - Second Layer:
      - Dorsal Interossei Abduct Toes

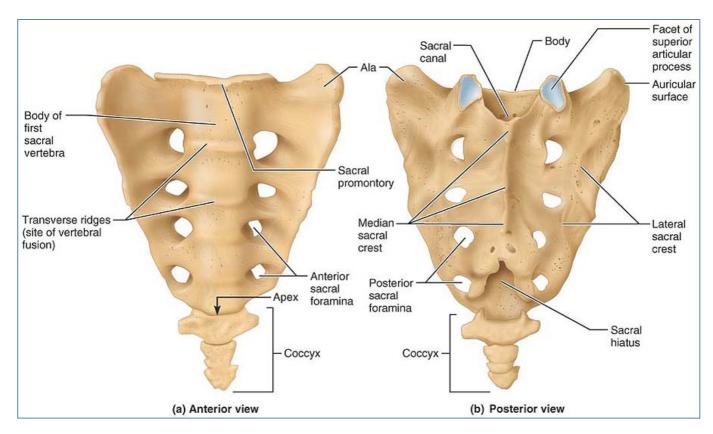



# **Structures Passing Medial Malleolus:**

- Tom Tibialis Posterior
- Dick Flexor Digitorum Longus
- And Posterior Tibial Artery
- Naughty Tibial Nerve
- Harry Flexor Hallucis Longus



# Structures Passing Lateral Malleolus:


- Fibularis Longus
- Fibularis Brevis



# The Pelvic Girdle & The Lower Limb: Bones, Joints, Muscles, Nerves & Vasculation

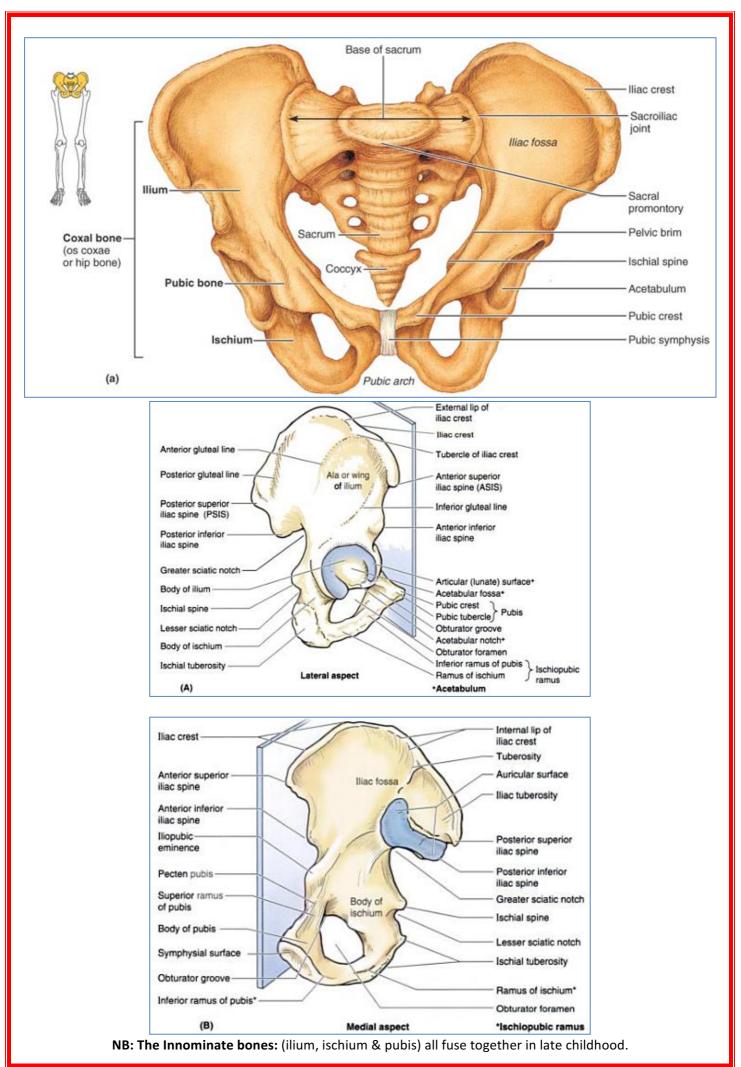
# Bones:

- The "Bony Pelvis":
  - Sacrum:
    - Type/Features:
      - Irregular Bone
        - The 5 last vertebrae fused together.
      - TheLandmarks:
        - Transverse ridges the 'lines of fusion' between sacral vertebrae.
        - Anterior/Posterior Sacral Foramina
          - o Penetrate sacrum lateral to the Transverse Ridges
          - o Transmits blood vessels
          - Transmits Anterior/Posterior Sacral Rami of sacral spinal nerves.
        - Median Sacral Crest fused spinous processes of sacral vertebrae.
        - Lateral Sacral Crests
          - Sacral Canal continuation of vertebral canal
        - Sacral Hiatus external inferior opening
    - Articulations:
      - Last Lumbar Vertebra
      - The 2 Hip Bones (Sacroiliac Joints)
      - The Coccyx
    - Origins/Insertions:
      - Iliacus O
      - Gluteus Maximus O
      - Piriformis



0

#### • Coxal Bones (hip bones):


- Type/Features:
  - Irregular Bones
  - Made up of 3 Bones during Childhood:
    - o Ilium
    - o Ischium
    - o Pubis
- Landmarks:
  - Acetabulum ("Wine Cup") Hemispherical Socket
  - Pelvic Brim
  - Ilium
    - o Iliac Crest
    - o Tubercle of the Iliac Crest
    - Anterior Superior Iliac Spine ASIS
    - Posterior Superior Iliac Spine PSIS
    - Anterior Inferior Iliac Spine AIIS
    - Posterior Inferior Iliac Spine PIIS
    - Greater Sciatic Notch Sciatic Nerve passes through
    - o Gluteal Lines Posterior/Anterior/Inferior
    - o Iliac Fossa
    - o Auricular Surface
  - Ischium
    - o Ischial Ramus
    - o Ischial Spine
    - o Lesser Sciatic Notch
    - o Ischial Tuberosity –(Huge Sacrotuberous Ligaments run from here to sacrum)
  - Pubis
    - o Pubic Crest
    - o Pubic Tubercle
    - o Obturator Foramen blood vessel & nerves pass through
    - Pubic symphysis
    - Pubic Arch/Subpubic Angle (Wide in females)

0

0

0

- Articulations:
  - Sacrum
  - Femurs
  - The other Coxal Bone (pubic symphysis)
- Origins/Insertions:
  - Iliacus
  - Sartorius O
  - Adductor Magnus
     O
  - Adductor Longus
     O
  - Adductor Brevis O
  - Pectineus
  - Gracilis
  - Rectus Femorus
     O
  - Tensor Fasciae Latae O
  - 3 Gluteus Muscles O
  - Gemellus Superior O
  - Obturator Externus
     O
  - Gemellus Inferior 0
  - Obturator Internus
     O
  - Quadratus Femorus
     O
  - Biceps Femoris O
  - Semitendinosus O
  - Semimembranosus
     O



- <u>Femur:</u>
- Type/Features:
  - Long bone
  - Longest & Strongest bone of the body.
  - Angle of Inclination 125°
  - Angle of Anteversion 10°
  - Neck of femur prone to fracture due to lack of trabeculae.
- Landmarks:
  - Head
  - Fovea Capitis "pit of head" short ligament of the femur head runs from this 'pit' to the acetabulum.
  - Neck
  - Greater Trochanter
  - Lesser Trochanter
  - Intertrochanteric Line (Anterior)
  - Intertrochanteric Crest (Posterior)
  - Gluteal Tuberosity
  - Linea Aspera
  - Medial & Lateral Epicondylar Lines
  - Lateral Epicondyle
  - Medial Epicondyle
  - Lateral Condyle
  - Medial Condyle
  - Intercondylar Fossa
  - Adductor Tubercle
  - Patellar Surface

# Articulations:

• Acetabulum of the Coxal Bones of the Hip

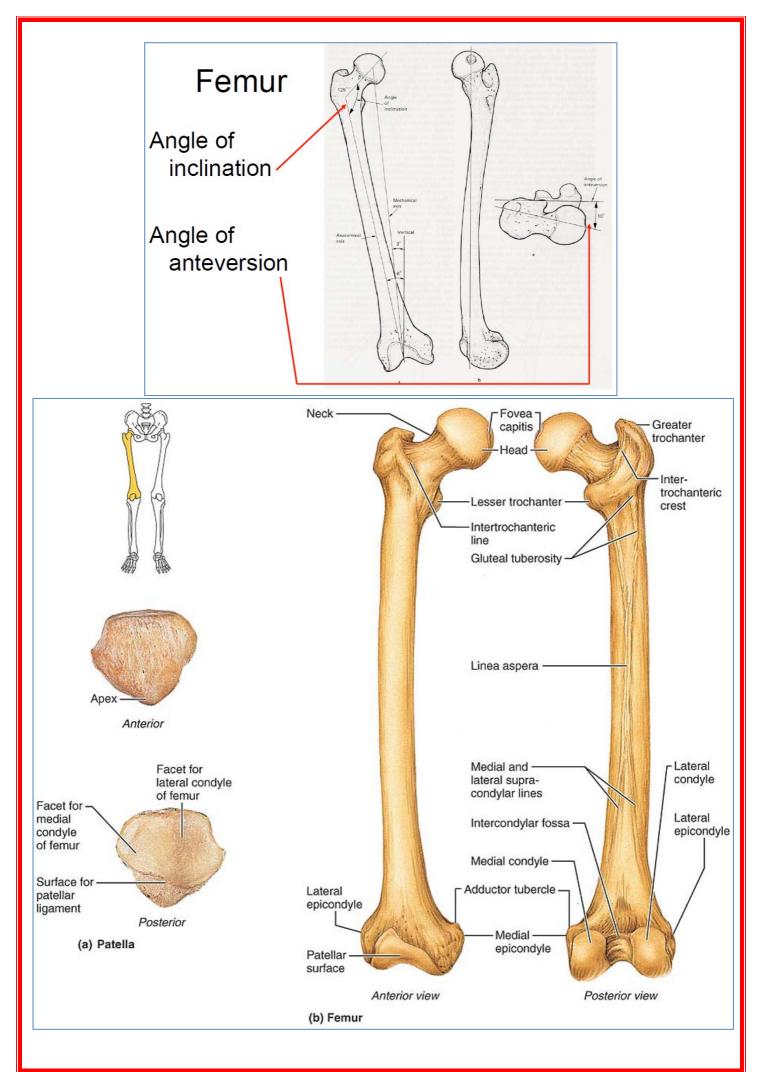
1

T

1

Т

T


Т

- Patella
- Tibia

# Origins/Insertions:

- Iliacus
- Psoas Major
- Adductor Magnus
- Adductor Longus
- Adductor Brevis
- Gluteus Maximus
- Gluteus Medius
- Gluteus Minimus
- Piriformis
- Superior Gemellus
- Obturator Internus
- Inferior Gemellus
- Obturator Externus
- Quadratus Femoris
- Biceps Femoris O (short head)
  - Gastrocnemius O (k
    - O (both heads)
- Plantaris O
- Popliteus O

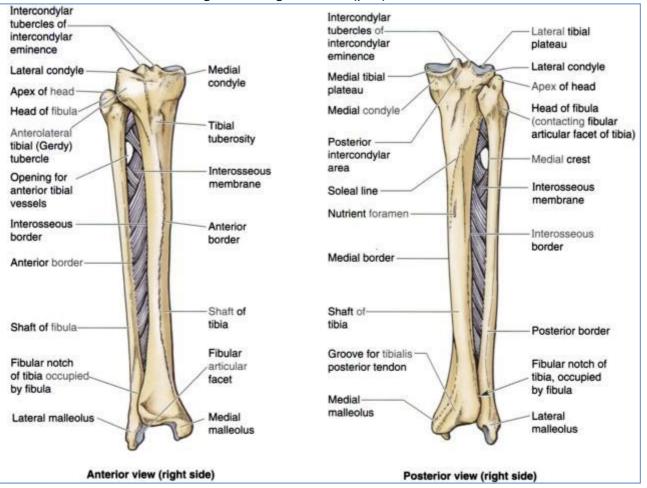




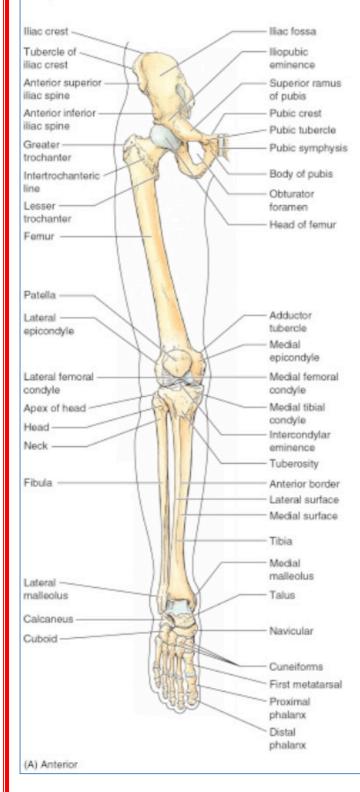
- <u>Patella</u>
- Type/Features:
  - Triangular Sesamoid Bone
  - Enclosed in Quadriceps Tendon
  - Protects Knee Joint Anteriorly
  - Improves Leverage of thigh muscles across the knee.
- Landmarks:
  - Lateral Facet
  - Medial Facet
  - Apex
- Articulations:
  - Femur Patellar Surface (extended knee)
  - Femur Lateral & Medial Condyles (Flexed knee)
- Origins/Insertions:
  - I Quadriceps Tendon (Rectus Femoris, Vastus Medialis/Intermedius/Lateralis)
  - Patellar Ligament

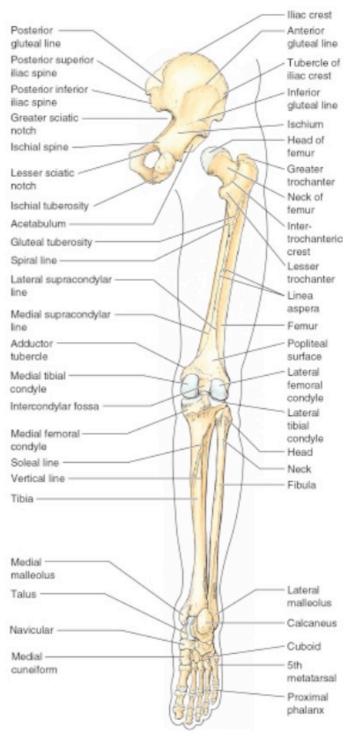
# • <u>Tibia</u>

Type/Features:


- Long Bone
- 2<sup>nd</sup> largest bone in the body.
- Transmits the Body's weight (not fibula)
- Shaft is vertical within the leg
- Landmarks:
  - Condyles Medial & Lateral
  - Tibial Plateau (superior articular surface)
  - Intercondylar Eminence formed by 2 Intercondylar Tubercles
  - Intercondylar Areas Anterior & Posterior Attachments for Cruciate Ligaments
  - Tibial Tuberosity
  - Fibular Articular Facet proximal Fibular articulation point
  - Soleal Line (origin of Soleus Muscle)
  - Anterior Border (of shaft)
  - Interosseous Border (of shaft)
  - Medial Malleolus
  - Fibular Notch distal Fibular articulation point
- Articulations:
  - Condyles of Femur
  - Fibula Fibular Facet (proximally)
  - Trochlea of Talus Bone of Tarsals of the Foot.
  - Fibula Fibular Notch (distally)
- Origins/Insertions:
  - Quadriceps Femoris I (Via Patellar Tendon)
  - Sartorius
  - Gracilis
  - Tensor Fascia Latae I (Via Iliotibial Tract)
  - Semitendinosus I
  - Semimembranosus
  - Popliteus I
  - Posterior Tibialis O
  - Flex. Digitorum Longus O (part)
  - Anterior Tibialis O
  - Ext. Digitorum Longus
  - Soleus (part) O

- <u>Fibula</u>
- Type/Features:
  - Slender Long Bone
  - Attached to Tibia by Tibiofibular Syndemosis (Incl. Interosseous Membrane)
  - Unlike Radius & Ulna, the leg is fixed (can't supinate/pronate)
  - No function in weight-bearing mainly for muscle attachment
- Landmarks:
  - Head
  - Apex of Head
  - Neck
  - Shaft
    - Anterior Border
    - o Interosseous Border
    - Posterior Border
    - Lateral Malleolus
- LateraArticulations:
  - Tibia Proximally & Distally
  - Trochlea of Talus Bone of Tarsals of the Foot.


0


(part)

- Origins/Insertions:
  - Biceps Femoris I
  - Soleus (part)
  - Ext. Digitorum Longus O
  - Flex. Hallucis Longus O
  - Tibialis Posterior O
  - Ext. Hallucis Longus O
  - Fibularis Tertius O
  - Fibularis Longus O
  - Fibularis Brevis O
  - Flex. Digitorum Longus O (part)

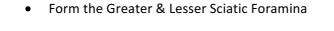


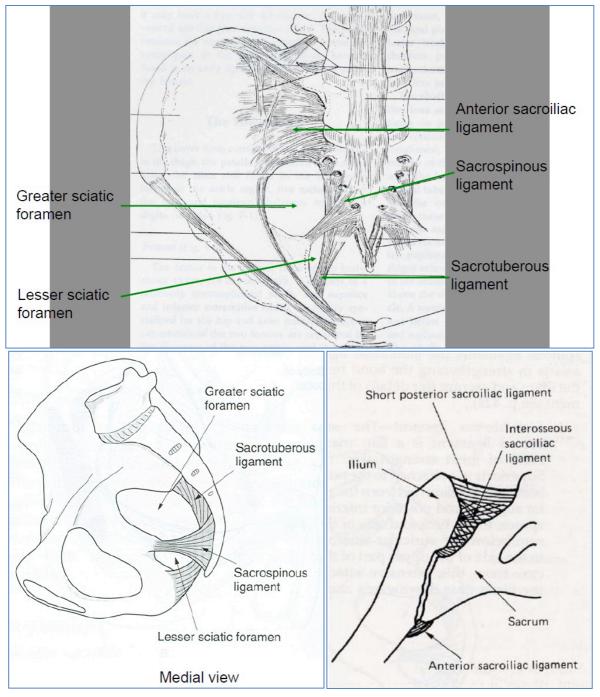
#### 5.2A, B. Bones of the lower limb.





(B) Posterior


# Joints:


- Sacro-Iliac:
  - Features:
    - Synovial Planar Joint
      - Loosens during labour.
  - o Bones:
    - Sacrum
    - Ilium
  - $\circ$  Ligaments:

- Anterior Sacroiliac Ligament
- Posterior Sacroiliac Ligament
- Interosseous Sacroiliac Ligament

# • Accessory Ligaments:

- Sacrotuberous Ischial Tuberosity  $\rightarrow$  Sacrum
- Sacrospinous
- Ischial Spine ightarrow Sacrum



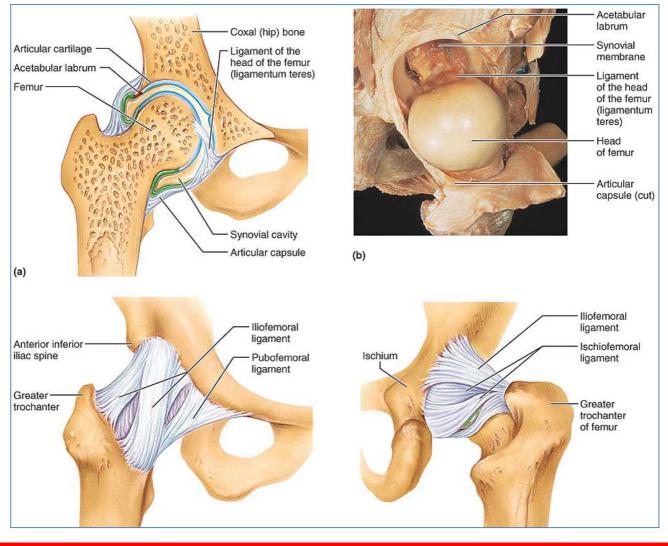


www.regentstudies.com

# Pubic Symphysis

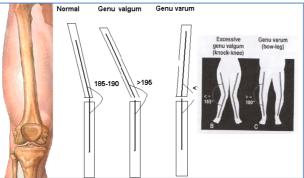
- Features:
  - Cartilagenous Joint
  - Loosens during labour
- o Bones:
  - Left & Right Pubis
  - Ligaments:
    - Ligamentous Capsule encases Fibrocartilagenous Disc.

# • <u>Hip Joints:</u>

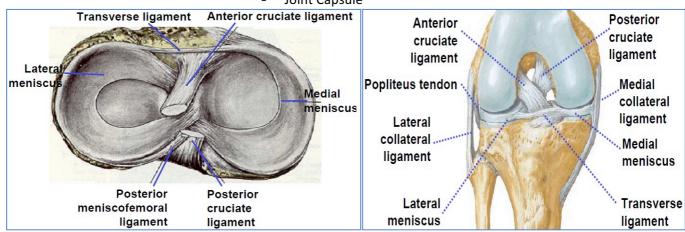

0

- Features:
  - Synovial, MultiAxial Ball & Socket
  - Acetabular Labrum (lip) of fibrocartilage deepens socket High Bony Congruency
  - Central fat-filled acetabular fossa.
- o Bones:
  - Rounded head of Femur
  - Acetabulum of Innominate Bones.
- Ligaments:
  - Iliofemoral Ligament (anterior)-[From Anterior Inferior Iliac Spine → Intertrochanteric Line]

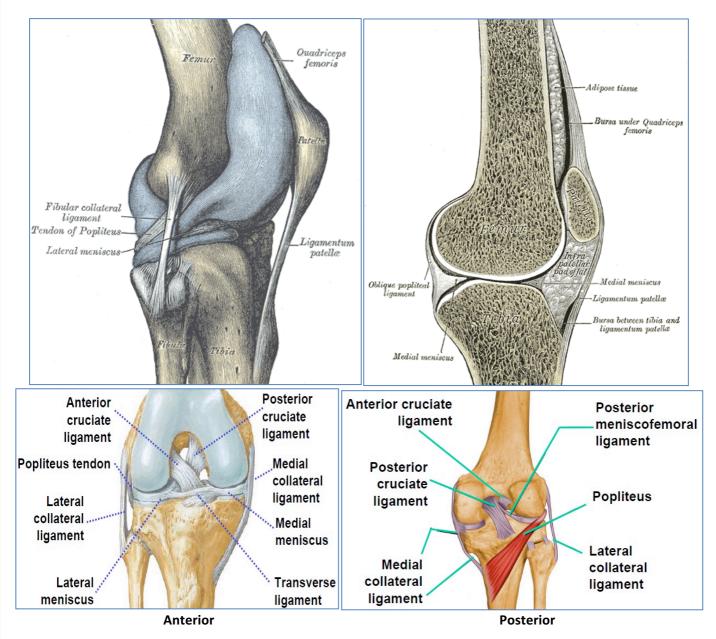
symphysis


pubis

- Limits extension, lateral rotation, adduction & abduction
- Pubofemoral (medial)-[From Iliopubic Eminence → Inferior Aspect of Intertrochanteric Line]
   Limits extension, lateral rotation & abduction
  - **Ischiofemoral** (posterior)-[From Posterior aspect of Acetabulum  $\rightarrow$  Greater Trochanter]
    - Limits extension, medial rotation & adduction
- Ligamentum Teres (Ligament of Head of Femur)
  - Not for stability provides passage for vessels

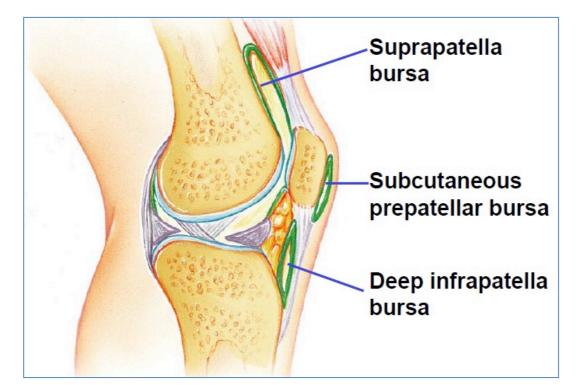



# <u>Knee Joint:</u>


- Features of The Knee Joint:
  - Synovial Modified Bicondylar Hinge Joint
  - Relatively Unstable:
    - Some Gliding & Rolling
    - Some Rotation
    - Ligaments provide the stability not Bony Congruity.
  - Poor Bony Congruity
  - 2 Parts:
    - Tibiofemoral Joint
    - PatelloFemoral Joint
  - Femur sits on an angle Medial Condyle of Femur extends further distally to accommodate the angle of articulation with the Tibia.

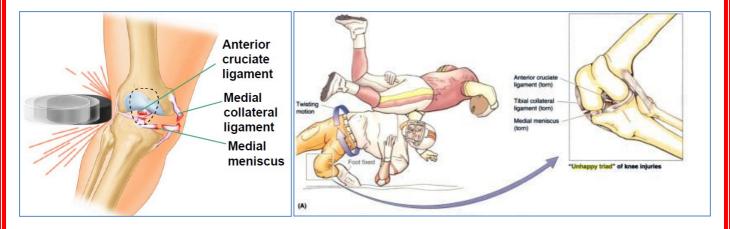


- Menisci:
  - Fibrocartilage on Tibial Plateaus
  - Deepens the socket increases congruity
  - Shock absorption
  - Peripheral Aspects are Vasculated Central Aspects aren't  $\rightarrow$  heal very slowly
  - Lateral:
    - o More freely movable than Medial Meniscus due to attachments
    - Attachments:
      - Intercondylar Areas Anterior & Posterior
      - Post. Cruciate Ligament via Post. Meniscofemoral Ligament
      - Weak attachment to Joint Capsule
      - Not attached to Lateral Collateral Ligament
      - Medial Meniscus via Transverse Ligament
  - Medial:
    - More firmly attached but higher chance of injury due to less give + connections to other things
    - Attachments:
      - Intercondylar Areas Anterior & Posterior
      - Medial Collateral ligament
      - Joint Capsule

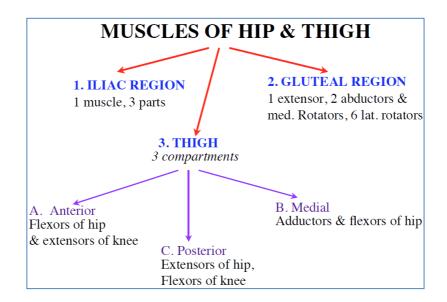



- o <u>Bones:</u>
  - Femur
  - Patella
  - Tibia
- o <u>Ligaments:</u>
  - Fibrous Capsule
    - Thick on Medial & Lateral aspects
    - 'Sleeve' around joint.
  - Extracapsular:
    - Patellar Ligament Very Stong
    - Collaterals (Medial & Lateral)
  - Intracapsular:
    - Cruciates (Anterior & Posterior Named in respect to their attachment to the Tibia)
      - Anterior
        - Stops Forward Displacement of Tibia on Femur
        - Tightens During Extension
      - o Posterior
        - Stops Backward Displacement of Tibia on Femur
        - Tightens During Flexion
    - Transverse Ligament (between Menisci)
    - Meniscofemoral Ligament (from Lateral Meniscus → Posterior Cruciate Ligament)

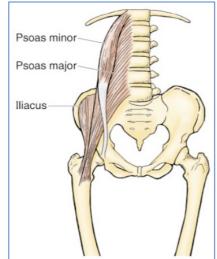



#### o Bursae:

- SupraPatella Bursa
  - Continuous with Snyovial Joint Cavity
  - Sits underneath Quads Tendon
- Subcutaneous PrePatellar Bursa
  - Anterior to Patella
  - For kneeling
- Deep Infrapatella Bursa
  - Sits on top of Fat Pads below Patellar Tendon

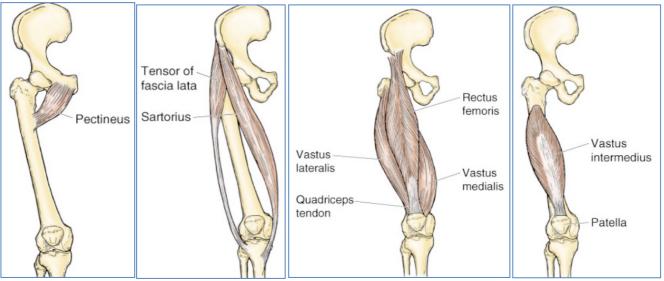


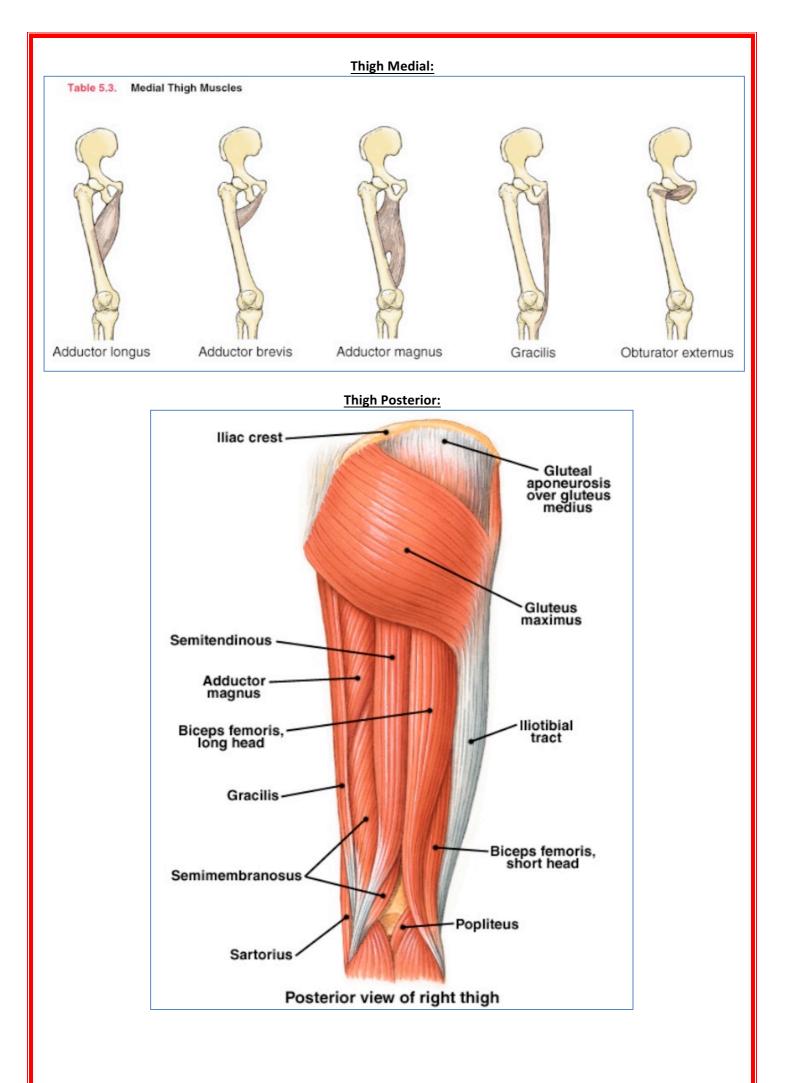

## • Injury: The Unhappy Triad:

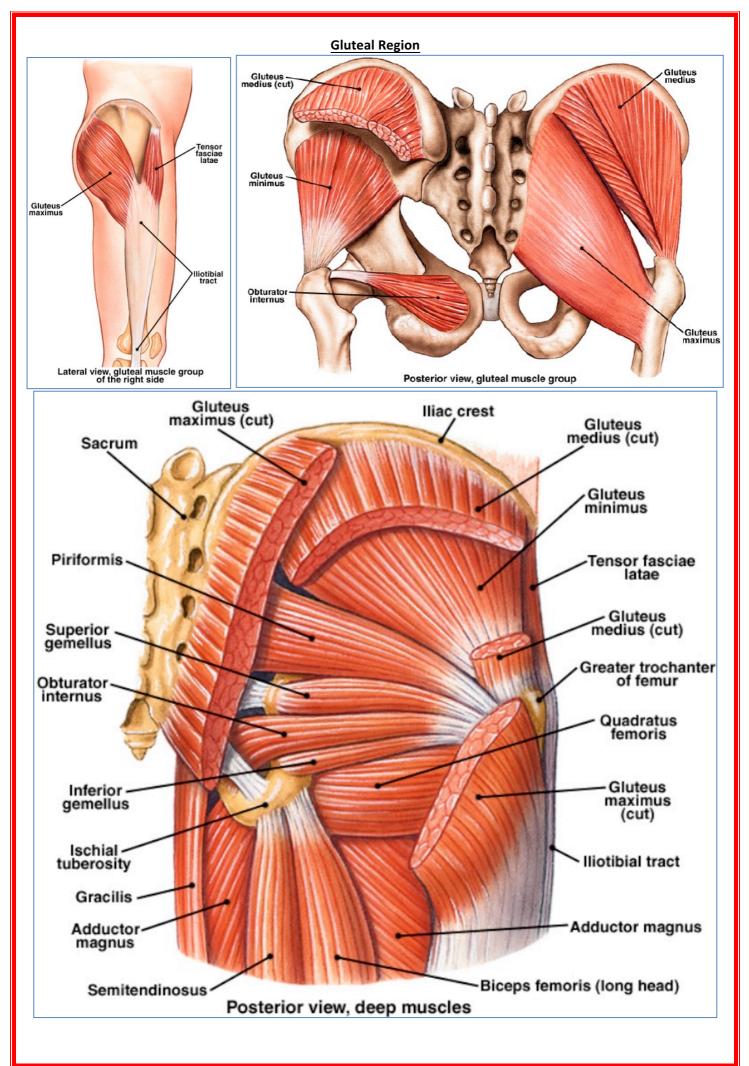

- Anterior Cruciate Ligament
- Medial Collateral Ligament
- Medial Meniscus



# Muscles:





**Iliac Region** 




Iliopsoas: Iliacus, Psoas Major, Psoas Minor

**Thigh: Anterior:** 







www.regentstudies.com

| <u>Muscle</u>                     | Origins/Insertions                                  | Action                              |  |
|-----------------------------------|-----------------------------------------------------|-------------------------------------|--|
| Sartorius                         | O – Anterior Superior Iliac Spine                   | Flexion of Hip                      |  |
| Femoral Nerve                     | I – Medial Aspect of Proximal Tibia                 | Abduction of Hip                    |  |
|                                   |                                                     | Lateral Rotation of Thigh           |  |
|                                   |                                                     | Flexion of Knee (weak)              |  |
| lliopsoas:                        | O – Iliac Fossa & Crest                             | Flexion of thigh                    |  |
| lliacus                           | Lateral Sacrum                                      | Doing a 'bow'                       |  |
| Femoral Nerve                     | I – Lesser Trochanter of Femur via Iliopsoas Tendon |                                     |  |
| lliopsoas:                        | O – Transverse processes, bodies & discs of Lumbar  | Lateral flexion of Vertebral Column |  |
| Psoas Major                       | Vertebrae                                           | le. An important 'postural muscle'  |  |
| Ventral Rami                      | I – Lesser Trochanter of Femur via Iliopsoas Tendon |                                     |  |
| (L <sub>1</sub> -L <sub>3</sub> ) |                                                     |                                     |  |

# • Thigh Muscles - Medial Compartment:

| Muscle               | Origins/Insertions                             | Action                                                             |  |  |
|----------------------|------------------------------------------------|--------------------------------------------------------------------|--|--|
| Gracilis             | O – Inferior Ramus of Pubis                    | Adduction of Thigh                                                 |  |  |
| Obturator Nerve      | I – Medial surface of Tibia inferior to medial | Flexion of Thigh                                                   |  |  |
|                      | condyle.                                       | Medial Rotation of Thigh                                           |  |  |
|                      |                                                | Flexion of Knee                                                    |  |  |
| Pectineus            | O – Pubic Crest                                | Adduction of Thigh                                                 |  |  |
| Femoral Nerve        | I – Between Lesser Trochanter & Linea          | Medial Rotation of Thigh                                           |  |  |
|                      | Aspera of Posterior Femur                      | Flexion of Thigh                                                   |  |  |
| Adductor Brevis      | O – Inferior Ramus of Pubis                    | Adduction of Thigh                                                 |  |  |
| Obturator Nerve      | I – Linea Aspera (above Adductor Longus)       | Medial Rotation of Thigh                                           |  |  |
| Adductor Longus      | O – Pubis near Pubic Symphysis                 | Adduction of Thigh                                                 |  |  |
| Anterior Division of | I – Linea Aspera                               | Flexion of Thigh                                                   |  |  |
| Obturator Nerve      |                                                | Medial Rotation of Thigh                                           |  |  |
| Adductor Magnus      | O – Ischial & Pubic Rami & Ischial Tuberosity  | Anterior Part:                                                     |  |  |
| Obturator Nerve      | (ie. Entire inferior surfaces of Pubis &       | <ul> <li>Adduction of Thigh</li> </ul>                             |  |  |
| & Sciatic Nerve      | lschium)                                       | Medial Rotation of Thigh                                           |  |  |
|                      | I – Linea Aspera & Adductor Tubercle of        | Flexion of Thigh                                                   |  |  |
|                      | Femur                                          | Posterior Part:                                                    |  |  |
|                      |                                                | <ul> <li>Synergist of Hamstrings in Thigh<br/>Extension</li> </ul> |  |  |

# • Thigh Muscles – Anterior Compartment:

| Muscle                                                                 | Origins/Insertions                                               | Action                            |  |
|------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--|
| Tensor Fasciae Latae                                                   | 0 – Anterior Superior Iliac Crest                                | Adduction of Thigh                |  |
| Superior Gluteal                                                       | I – Iliotibial Tract*                                            | Flexion of Thigh                  |  |
| Nerve                                                                  |                                                                  | Medial Rotation of Thigh          |  |
| Quadriceps Femoris:                                                    | 0 – Anterior Inferior Iliac Spine                                | Flexion of Thigh                  |  |
| All: Femoral Nerve                                                     | Superior Margin of Acetabulum                                    | Extension of Knee                 |  |
| Rectus Femoris                                                         | I – Patella & Tibial Tuberosity Via Patellar Ligament            |                                   |  |
| Quadriceps Femoris:                                                    | O – Greater Trochanter of Femur                                  | Extension of Knee                 |  |
| Vastus Lateralus                                                       | I – Patella & Tibial Tuberosity Via Patellar Ligament            | Stabilises Knee                   |  |
| Quadriceps Femoris: 0 – Linea Aspera & Intertrochanteric Line of Femur |                                                                  | Extension of Knee                 |  |
| Vastus Medialis I – Patella & Tibial Tuberosity Via Patellar Ligament  |                                                                  | Inferior Fibres Stabilise Patella |  |
| Quadriceps Femoris:                                                    | Quadriceps Femoris: O – Proximal Femur Shaft (Anterior & Lateral |                                   |  |
| Vastus Intermedius                                                     | Surfaces)                                                        |                                   |  |
|                                                                        | I – Patella & Tibial Tuberosity Via Patellar Ligament            |                                   |  |

\*NB: Iliotibial Tract – Thickened lateral portion of the Fascia Lata (fascia that ensheathes all muscles of the thigh). It extends as a tendinous band from the Iliac Crest to the Knee.

#### MUSCLE GALLERY TABLE 10.14 Muscles Crossing the Hip and Knee Joints: Movements of the Thigh and Leg (Figures 10.19 and 10.20) (continued)

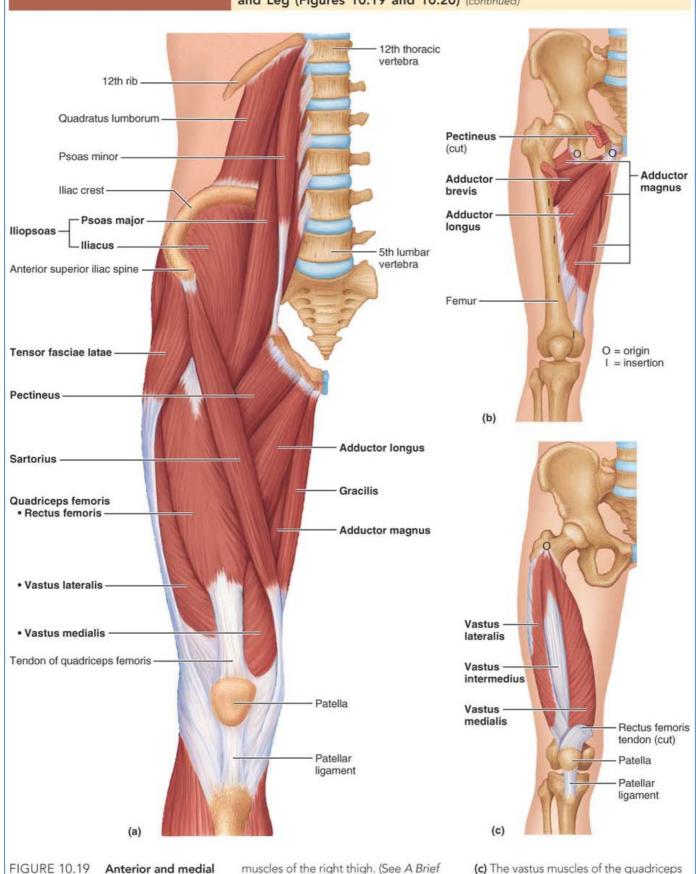
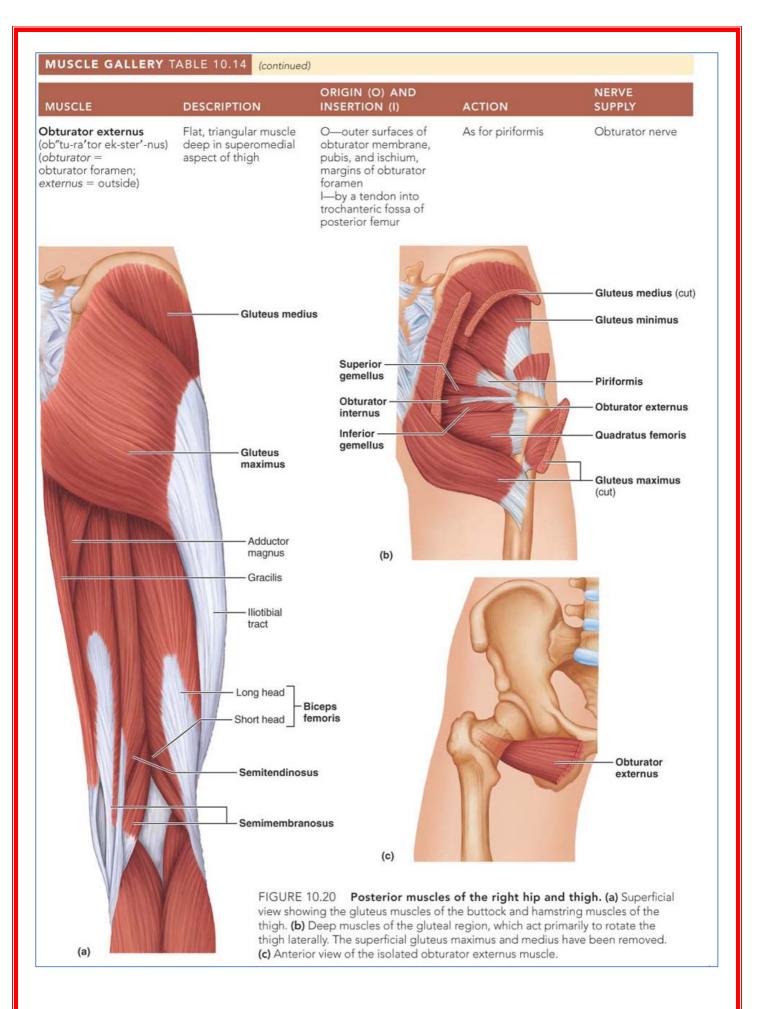
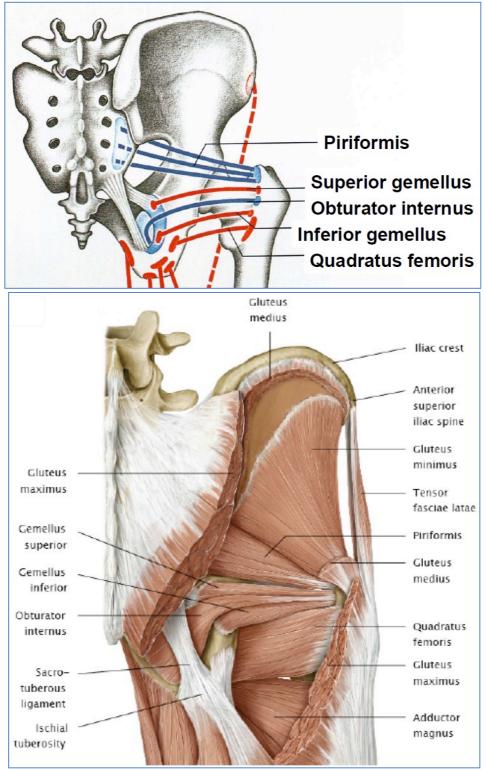



FIGURE 10.19 Anterior and medial muscles promoting movements of the thigh and leg. (a) Anterior view of the deep muscles of the pelvis and superficial muscles of the right thigh. (See A Brief Atlas of the Human Body, Figure 40.) (b) Adductor muscles of the medial compartment of the thigh isolated. (c) The vastus muscles of the quadriceps group. The rectus femoris muscle of the quadriceps group and surrounding muscles have been removed.

# • <u>3 Gluteal Muscles:</u>


| • <u>3 Glutear Muscles:</u><br>Muscle | Origins/Insertions                        | Action                                  |  |
|---------------------------------------|-------------------------------------------|-----------------------------------------|--|
|                                       | <u></u>                                   | <u></u>                                 |  |
| Gluteus Maximus                       | O – Dorsal Ilium, Sacrum & Coccyx         | Extension of Thigh                      |  |
| Inferior Gluteal Nerve                | I – Gluteal Tuberosity (line) of Femur    | Lateral Rotation of Thigh               |  |
|                                       | Iliotibial Tract*                         | Abduction of Thigh                      |  |
| Gluteus Medius                        | O – Lateral Surface of Ilium (between     | Abduction of Thigh                      |  |
| Superior Gluteal Nerve                | Anterior & Posterior Gluteal Lines)       | Medial Rotation of Thigh                |  |
|                                       | I – Lateral Surface of Greater Trochanter | -Critical for walking – steadies Pelvis |  |
|                                       | of Femur                                  |                                         |  |
| Gluteus Minimus                       | O – Lateral Surface of Ilium (between     | Abduction of Thigh                      |  |
| Superior Gluteal Nerve                | Anterior & Inferior Gluteal Lines)        | Medial Rotation of Thigh                |  |
|                                       | I – Anterior aspect of Greater Trochanter | -Critical for walking – steadies Pelvis |  |
|                                       | of Femur                                  |                                         |  |

# • Lateral Rotators of Femur:


| Muscle                                           | Origins/Insertions                          | Action                           |  |
|--------------------------------------------------|---------------------------------------------|----------------------------------|--|
| Piriformus                                       | O – Sacrum (Anterio-Lateral Aspect)         | Adduction of Thigh               |  |
| S <sub>1</sub> , S <sub>2</sub> & L <sub>5</sub> | I – Greater Trochanter of Femur (superior)  | Rotates Extended Thigh Laterally |  |
|                                                  |                                             | Stabilises Hip Joint             |  |
| Gemellus Superior                                | O – Ischial Spine                           | Adduction of Thigh               |  |
| $L_5 \& S_1$                                     | I – Greater Trochanter of Femur             | Rotates Extended Thigh Laterally |  |
|                                                  |                                             | Stabilises Hip Joint             |  |
| <b>Obturator Internus</b>                        | O – Obturator Membrane (Inner Surface)      | Adduction of Thigh               |  |
| $L_5 \& S_1$                                     | Greater Sciatic Notch (Inner Surface)       | Rotates Extended Thigh Laterally |  |
|                                                  | Margins of Obturator Foramen (Inner)        | Stabilises Hip Joint             |  |
|                                                  | I – Greater Trochanter                      |                                  |  |
| Gemellus Inferior                                | O – Ischial Tuberosity                      | Adduction of Thigh               |  |
| $L_5 \& S_1$                                     | I – Greater Trochanter of Femur             | Rotates Extended Thigh Laterally |  |
|                                                  |                                             | Stabilises Hip Joint             |  |
| <b>Obturator Externus</b>                        | 0 – Obturator Membrane (outer surface)      | Adduction of Thigh               |  |
| Obturator Nerve                                  | Margins of Obturator Foramen                | Rotates Extended Thigh Laterally |  |
|                                                  | Pubis (Outer Surface)                       | Stabilises Hip Joint             |  |
|                                                  | Ischium (Outer Surface)                     |                                  |  |
|                                                  | I – Trochanteric Fossa of (posterior) Femur |                                  |  |
| Quadratus Femoris                                | O – Ischial Tuberosity                      | Lateral Rotation of Thigh        |  |
| L <sub>5</sub> & S <sub>1</sub>                  | I – Trochanteric Crest of Femur             | Stabilises Hip Joint             |  |

# • Thigh Muscles - Posterior Compartment:

| Muscle                | Origins/Insertions                        | Action                                 |  |
|-----------------------|-------------------------------------------|----------------------------------------|--|
| Hamstrings:           | O – [Long Head] Ischial Tuberosity        | Extension of Thigh                     |  |
| <b>Biceps Femoris</b> | [Short head] Linea Aspera                 | Flexion of Knee                        |  |
| Long Head: Sciatic-   | I – Common Tendon → Head of Fibula        | Lateral Rotation of Knee (when flexed) |  |
| Tibial Nerve.         | & Lateral Condyle of Tibia                |                                        |  |
| Short Head: Fibular   | (Forms Lateral Border of Popliteal Fossa) |                                        |  |
| Nerve                 |                                           |                                        |  |
| Hamstrings:           | O – Ischial Tuberosity                    | Extension of Thigh                     |  |
| Semitendonosus        | I – Upper Tibial Shaft (medially)         | Flexion of Knee                        |  |
| Sciatic-Tibial Nerve  |                                           | Medial Rotation of Knee (leg)          |  |
| Hamstrings:           | O – Ischial Tuberosity                    | Extension of Thigh                     |  |
| Semimembranosus       | I – Medial Condyle of Tibia               | Flexion of Knee                        |  |
| Sciatic-Tibial Nerve  | (via oblique popliteal ligament)          | Medial Rotation of Knee (leg)          |  |



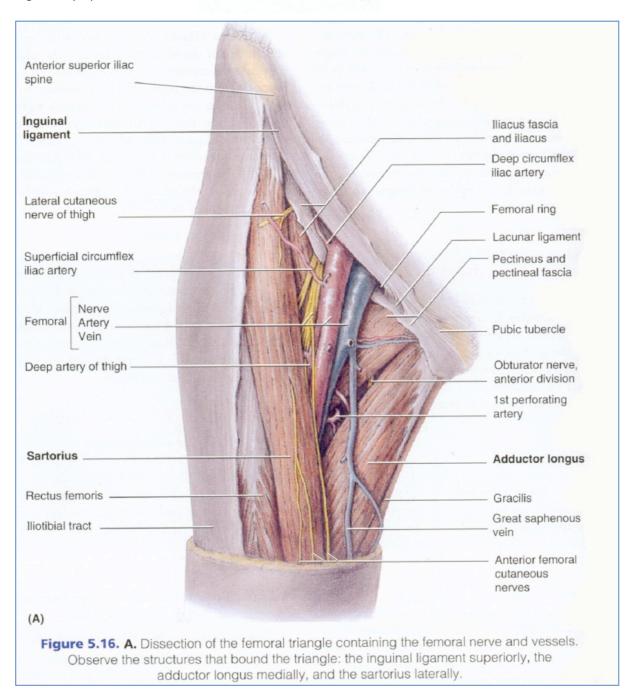
# Lateral Rotators: Origins & Insertions: Posterior Aspect



# The "Femoral Triangle"

"NAVEL"

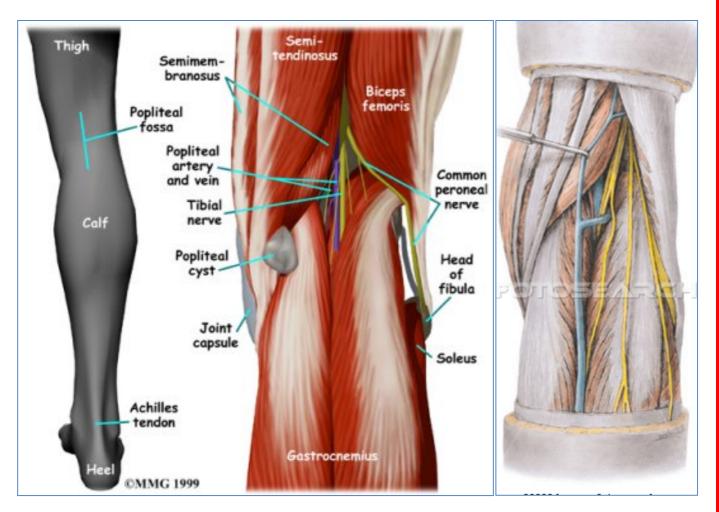
# **Boundaries:**


- Superior: Inguinal Ligament
- Lateral: Sartorius
- Medial: Adductor Longus

#### **Corners:**

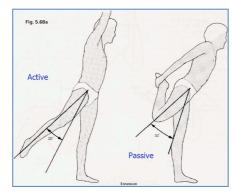
- Inferior: Where Sartorius meets Adductor Longus
- Superior: Where Sartorius meets Inguinal Ligament
- Medial: Where Adductor Longus meets Pectineus

#### **Contents:**

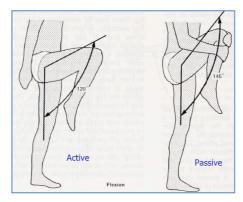

- Femoral Nerve
- Femoral Artery
- Femoral Vein
- Empty Space
- Inguinal Lymphatics



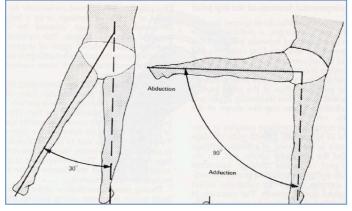
# The Popliteal Fossa:


- General:
- Posterior Aspect of Knee
- Diamond-shaped
- Boundaries:
  - Superio-Medially:
    - Semimembranosus
    - Semitendonosus
  - $\circ$  Superio-Laterally:
    - Biceps Femoris
  - $\circ$  Inferior-Medially:
    - Medial head of Gastrocnemius
  - Inferior-Laterally:
    - Lateral Head of Gastrocnemius
- <u>Contents:</u>
  - o Popliteal Artery
  - $\circ \quad \text{Popliteal Vein} \\$

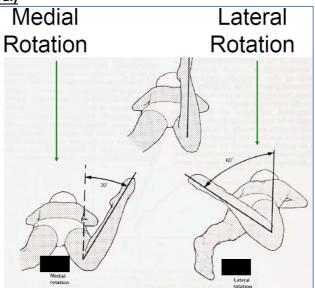
- o Tibial Nerve
- o Common Fibular Nerve




# Movements @ the Hip:

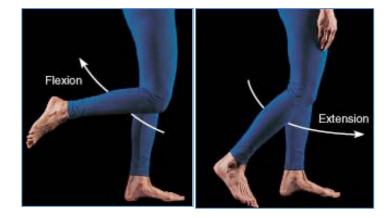

• Extension:




• Flexion:



Abduction & Adduction:

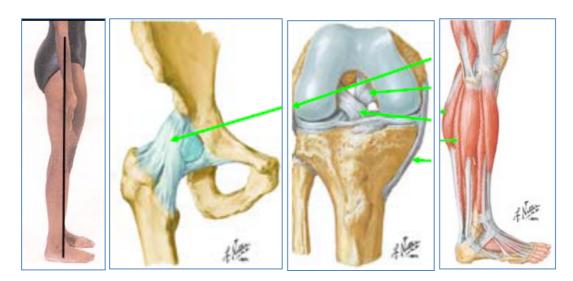



• Rotation (medial & lateral)



#### Movements at the Knee:

- Flexion
- Extension
- Slight Rotation




# Movements at the Ankle:

- Inversion
- Eversion
- Plantar Flexion
- Dorsi Flexion

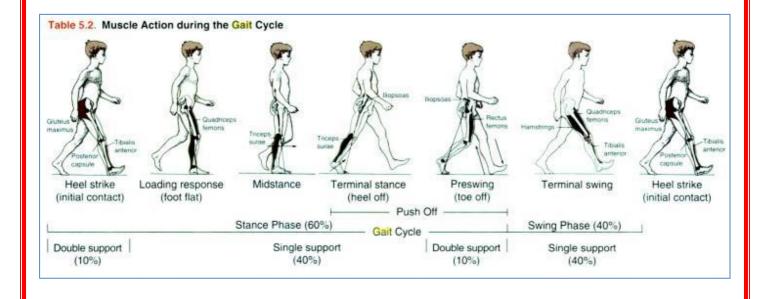
# Gait – The Process of Walking:

- Standing:
  - o Postural muscles working
  - Very efficient only consumes 7% more energy than lying down.
  - Knee 'locks' in place
  - All 3 joints (hip, knee & ankle) are in their most stable positions.
  - Hip:
    - Neutral/Extended
    - Iliofemoral ligament is taut in this position
    - Centre of Gravity Posterior to joint
  - Knee:
    - Fully Extended
    - Knee ligaments are taut in this position
    - Centre of Gravity Anterior to joint
  - Ankle:
    - Neutral/Slightly Dorsiflexed
    - Centre of Gravity Anterior to joint
    - No innate stabilisers stabilised by contraction of Triceps Surae (Gastrocnemius + Soleus)



# Walking:

0

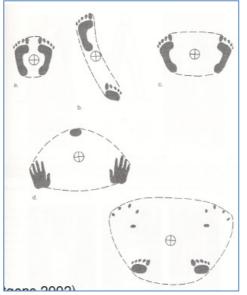

- Tasks of Gait:
  - Weight Acceptance
  - Single Limb Support
  - Advancement of Limb
  - Phases of Walking:
    - Stance: (Foot is on the ground)

|                  |                | Hip                          | Knee               | Ankle               |
|------------------|----------------|------------------------------|--------------------|---------------------|
| Heel Strike      | Position:      | Flexed                       | Mildly Flexed      | Dorsiflexed         |
|                  | Prime Mover/s: | Psoas Muscle                 | Gravity            | Tibialis Anterior   |
|                  | Stabiliser/s:  | Gluteus Maximus              | Iliotibial Tract   | Inverters/Everters  |
|                  |                |                              | Quadriceps         |                     |
| <b>Midstance</b> | Position:      | Flexed $\rightarrow$ Neutral | Extended           | Neutral/Dorsiflexed |
|                  | Prime Mover/s: | Gluteus Maximus              | -                  | -                   |
|                  |                | Hamstrings                   |                    |                     |
|                  | Stabiliser/s:  | Gluteus Medius               | Quadriceps Femoris | Intrinsic Foot      |
|                  |                | Gluteus Minimus              | Medial Muscles     | Muscles             |
|                  |                | Tensor Fascia Lata           |                    |                     |
| <u>Toe-Off</u>   | Position:      | Neutral $\rightarrow$ Flexed | Beginning to Flex  | Plantar Flexion     |
|                  | Prime Mover/s: | Gluteus Maximus              | -                  | Triceps Surae       |
|                  | Stabiliser/s:  | -                            | Quadriceps Femoris | Toe Flexors         |
|                  | •              | •                            | •                  | •                   |

Swing: (Foot is off the ground)

• Swing:

|              |                | Hip                            | Knee                           | Ankle             |
|--------------|----------------|--------------------------------|--------------------------------|-------------------|
| <u>Swing</u> | Position:      | Extended $\rightarrow$ Flexion | $Flexed \rightarrow Extension$ | Dorsiflexion      |
|              | Prime Mover/s: | lliopsoas                      | Gravity                        | Tibialis Anterior |
|              |                | Lateral Rotators               |                                |                   |
|              | Stabiliser/s:  | Antag: Gluteus Maximus         | Quadriceps Femoris             | -                 |
|              |                |                                | Antag: Hamstrings              |                   |




# • Features of Gait:

Centre of Gravity

Lower = More Stable

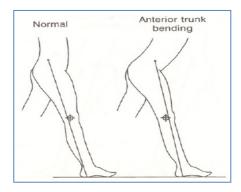
- Base of Support –
- Step Length
- Velocity
- Cadence (steps/minute)



Base of Support

# • Factors Influencing Gait:

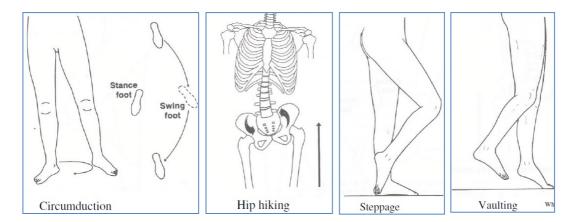
- Age/Maturation adult gait patter occurs at ≈10yrs
- Old age
- Gender
- Pain
- CNS Disorders Stroke/MS/Parkinsons/Kennedy's Disease/etc
- MSS Impairments Injury/Fused Joint/Tendonitis/Arthritis/etc
- Assistive devices
- Braces/Orthotics/Taping
- Habit
- Terrain
- Velocity
- Emotion
- Height
- Weight


# • Methods of Gait Analysis:

- Visual Method (eg. In the doctor's office)
- Video Method (eg. Slo-mo camera)
- Gait Timing (Foot Switches/Sensored Catwalks)


Larger = More Stable (eg. Zimmer frames/walking sticks)

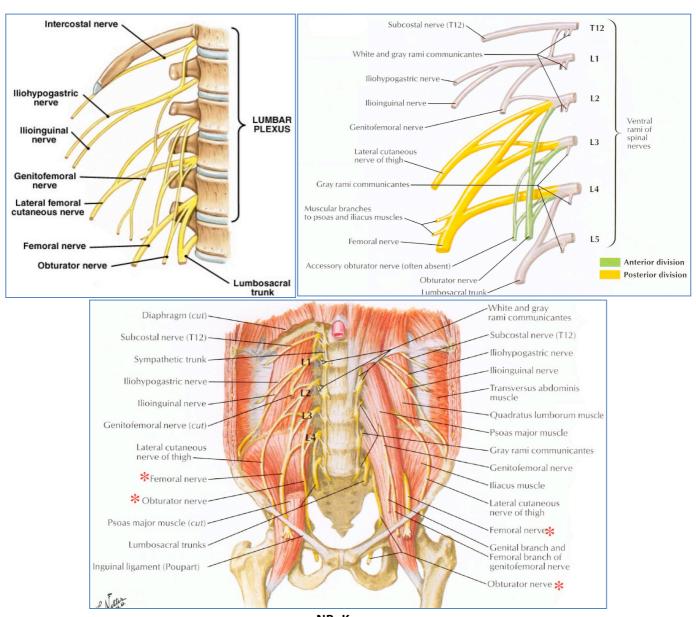
## • Examples of Gait Abnormalities:


- Anterior Trunk Bending:
  - Weak knee extensors need to 'lock' their knee to walk/
  - Fused knee/
  - Tight hip flexors/



- Trendelenburg (ie. 'Hip Drop'):
  - Hip-abductor weakness/

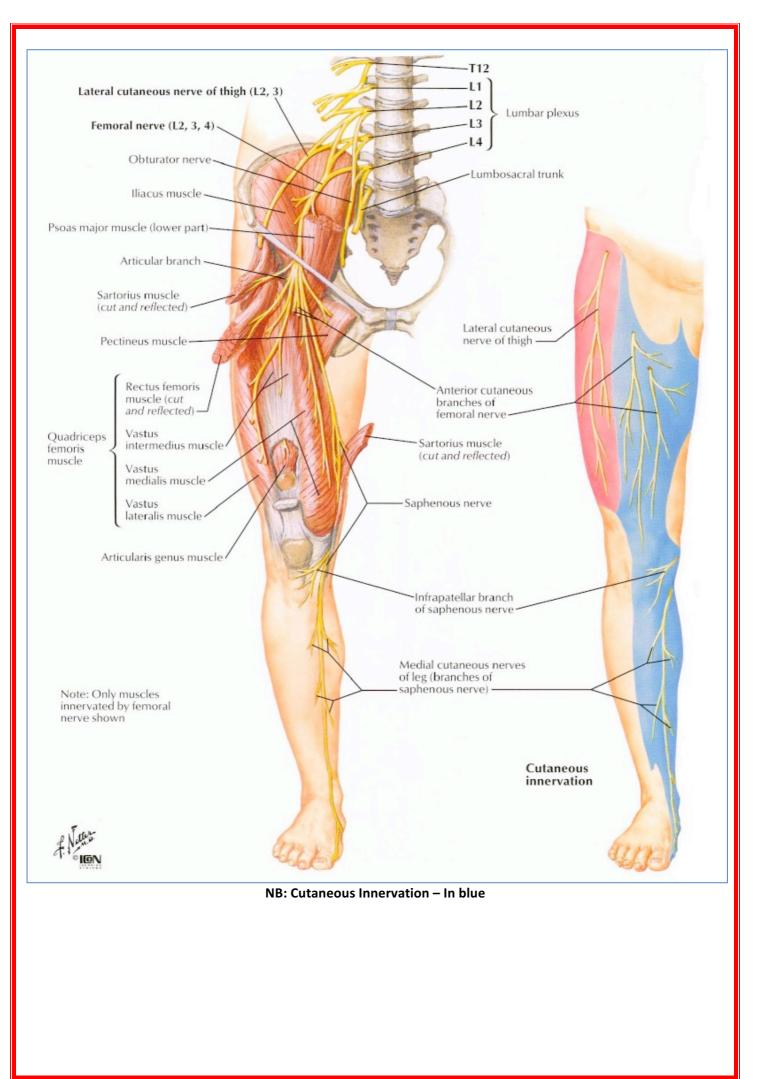



- Leg Length Discrepancy:
  - Anatomical:
    - Actual difference in leg length
  - Functional:
    - Eg. Neurological Muscle imbalance ie. Stroke/foot-drop/etc.
    - o Eg. Musculoskeletal Problems
  - Patients may try to overcome this by:
    - o Circumducting the hip
    - Hip Hiking
    - o Steppage
    - $\circ$  Vaulting



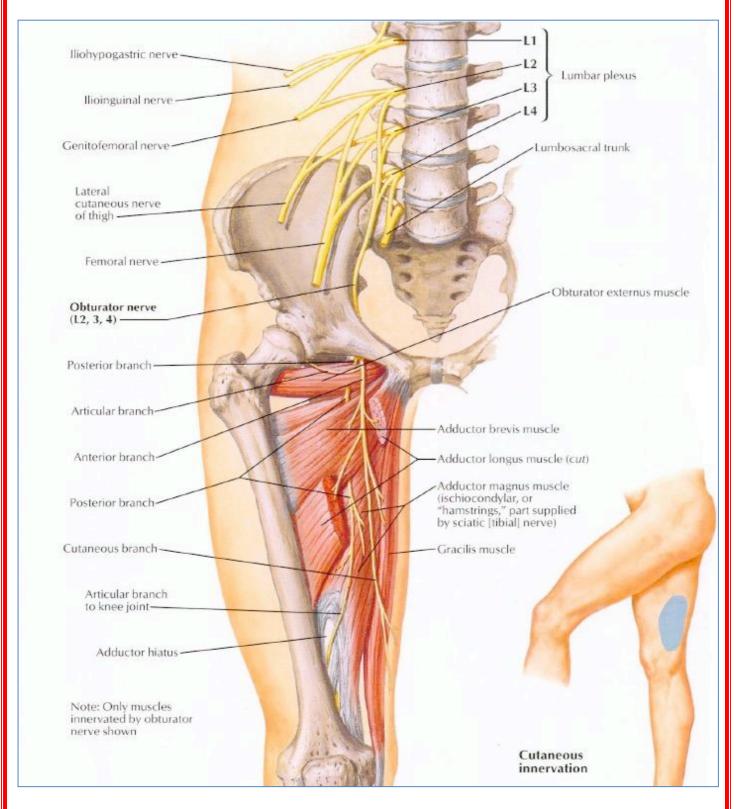
- Excessive Knee Extension:
  - Ie. Snapping the knee into its 'locked' position midway through stance phase.
  - Due to Weak Knee Flexors.
- 'Foot Slap':
  - Ie. Lack of eccentric control of Dorsiflexion  $\rightarrow$  following 'heel strike', the foot slaps the ground.
- 'Toe Drag':
  - Ie. Inadequate Dorsiflexion  $\rightarrow$  during Swing Phase, the ankle hangs down in the plantarflexed position  $\rightarrow$  drags along the ground.
- Insufficient 'Toe-Off':
  - Where the whole foot is lifted off the ground at once (as opposed to pushing off from the toes)
  - Due to:
    - Nerve lesions/
    - Fusion of the ankle/
    - Archilles Tendon Problem (torn/inflamed/etc)
    - $\circ$   $\,$  Pain in front (ball) of foot  $\,$

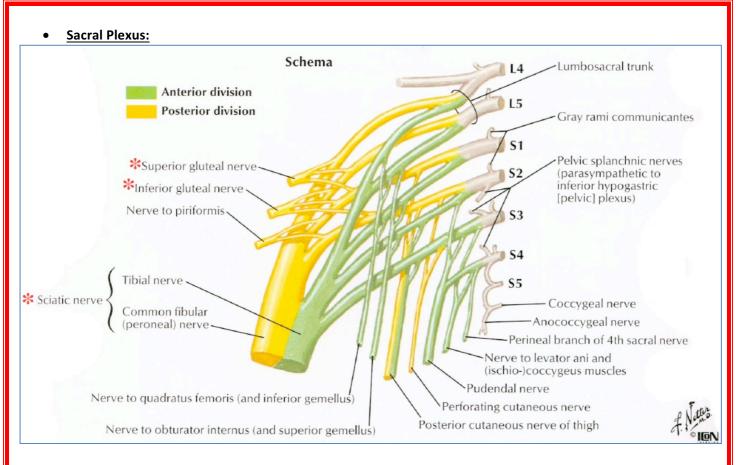
#### Innervation:


• Lumbar Plexus:



<u>NB: Know:</u> Lumbosacral Trunk – Communicates between Lumbar & Sacral Plexus


# • Femoral Nerve:

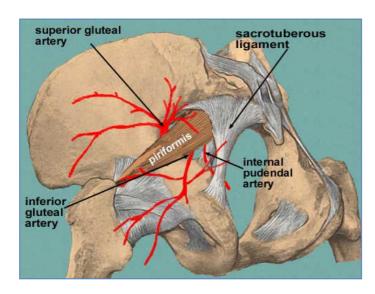

- Branches off L<sub>2</sub>, L<sub>3</sub> & L<sub>4</sub>
- Runs between Psoas Major & Iliacus  $\rightarrow$  beneath the Inguinal Ligament  $\rightarrow$  Thigh  $\rightarrow$  Splits in 2:
  - Anterior Division
    - o Cutaneous Branches
    - $\circ$  Muscular Branches  $\rightarrow$  Pectineus & Sartorius
  - Posterior Division
    - Cutaneous Branch Saphenous Nerve
    - $\circ$  Muscular Branches  $\rightarrow$  Quadriceps Femoris
- Innervates:
  - Pectineus
  - Sartorius
  - Rectus Femoris
  - Vastus Lateralis
  - Vastus Intermedius
  - Vastus Lateralus
  - Skin of Anterio-Medial Thigh & Lower Leg + Medial Aspect of Foot



### • Obturator Nerve:

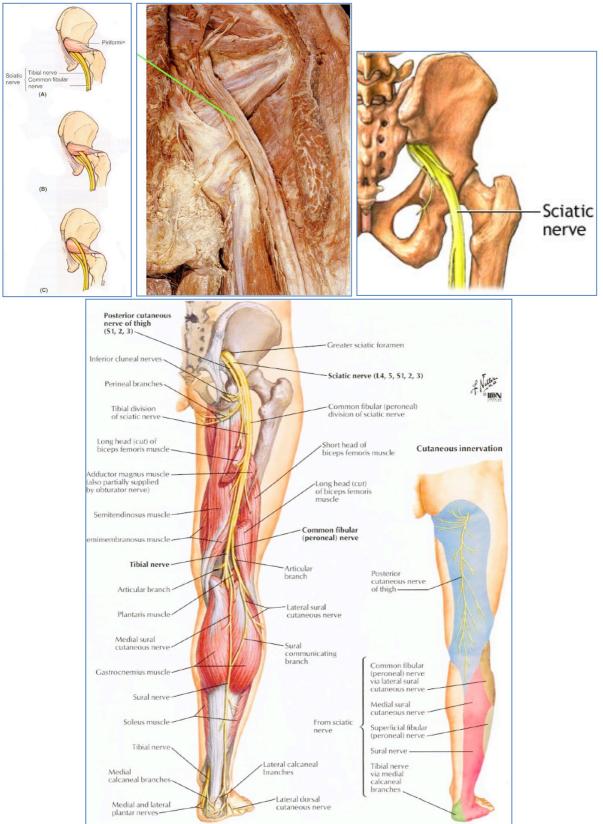
- Branches off L<sub>2</sub>, L<sub>3</sub> & L<sub>4</sub>
- Runs medial to Psoas Major, down along the inside wall of lesser pelvis → through Obturator Canal (in obturator membrane) through Obturator Foramen → Thigh
- Innervates:
  - External Obturator
  - Adductor Longus
  - Adductor Brevis
  - Adductor Magnus
  - Gracilis
  - Skin of medial aspect of thigh






### • Superior Gluteal Nerve:

- Branches off L<sub>4</sub>, L<sub>5</sub> & S<sub>1</sub>
- Runs from Dorsal Roots → leaves pelvis through Greater Sciatic Foramen above Piriformis → Gluteus Medius, Gluteus Minimus & Tensor Fasciae Latae.
  - Accompanied by Superior Gluteal Vein & Artery.
- Innervates:
  - Gluteus Medius
  - Gluteus Mimimus
  - Tensor Fasciae Latae

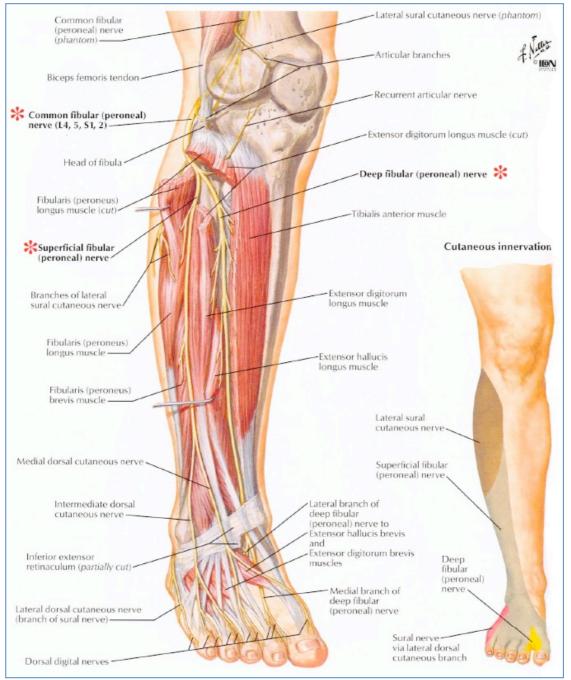

#### • Inferior Gluteal Nerve:

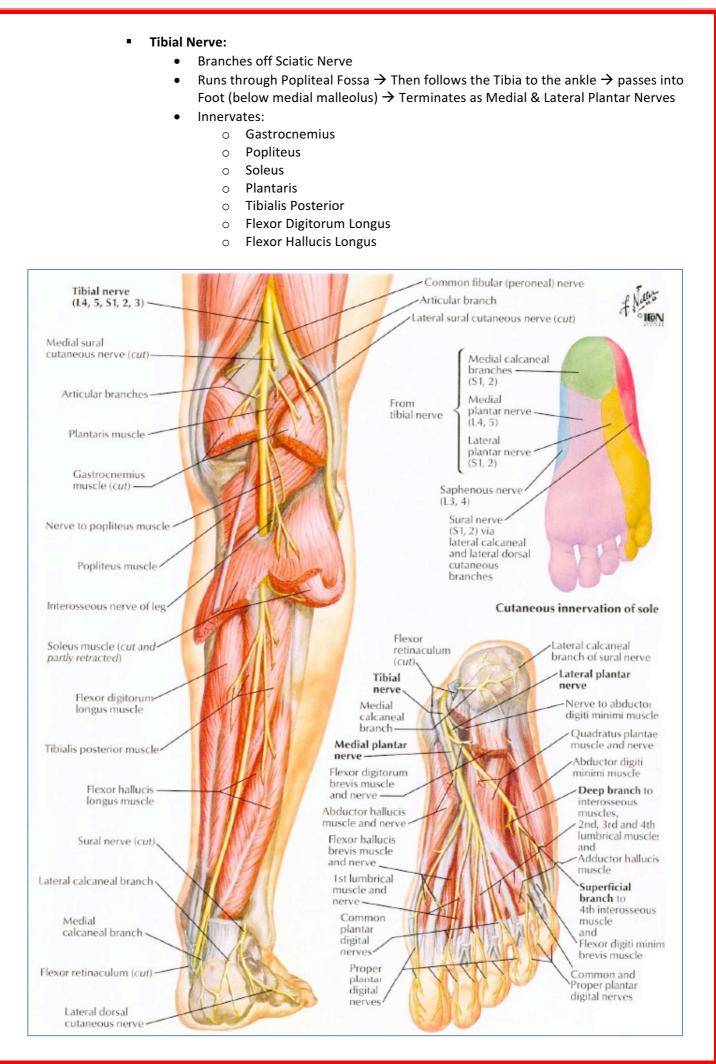
- Branches off L<sub>5</sub>, S<sub>1</sub> & S<sub>2</sub>
- Runs from Dorsal Roots → leaves pelvis through Greater Sciatic Foramen above Piriformis → Gluteus Maximus.
- Innervates:
  - Gluteus Maximus

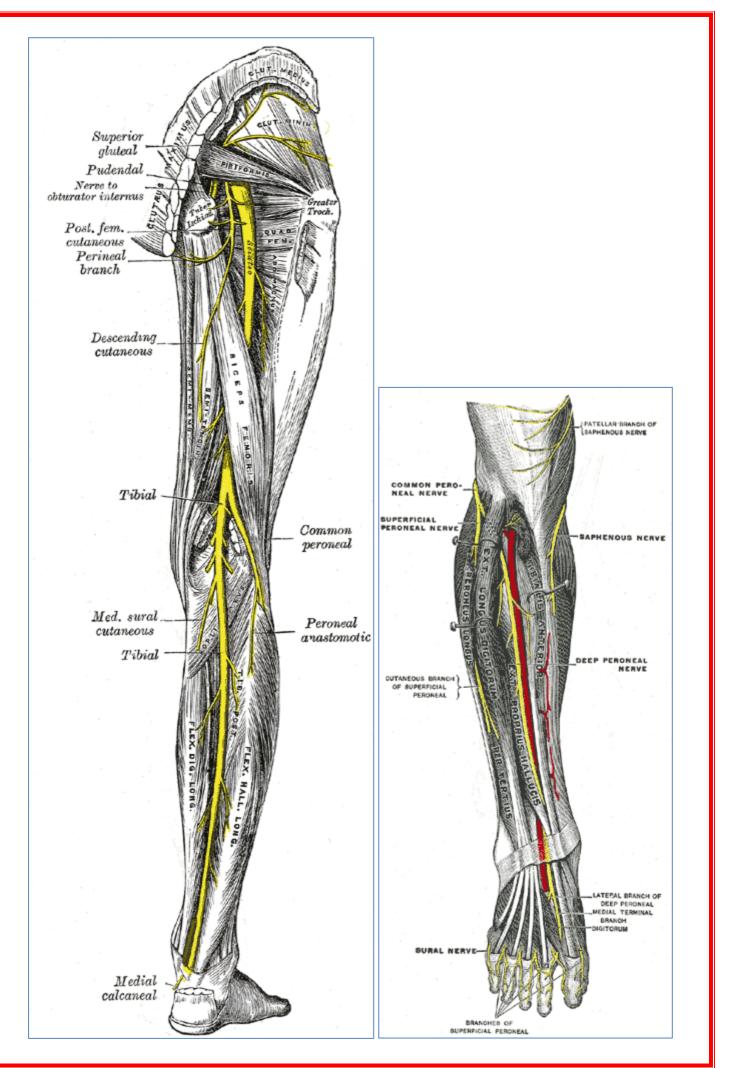


#### • Sciatic Nerve:

- Branches off L<sub>4</sub>, L<sub>5</sub>, S<sub>1</sub>, S<sub>2</sub> & S<sub>3</sub>
- Runs from inside pelvis → through Greater Sciatic Foramen (below piriformis) → descends along the posterior thigh to about its lower third → Divides into 2 Branches: Tibial & Common Fibular Nerves. (some variation)
- Innervates:
  - Hamstrings
  - ½ of Adductor Magnus

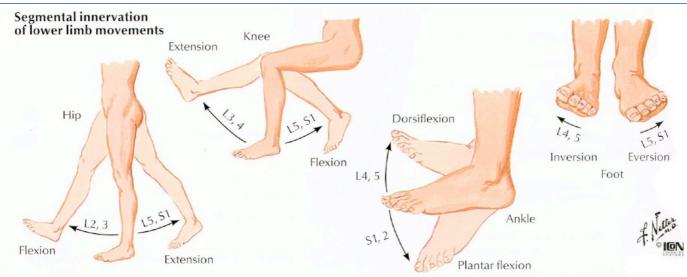




## Sciatic Nerve: Common Fibular (Peroneal) Nerve:


- Branches off Sciatic Nerve
- Runs obliquely along the lateral side of the Popliteal Fossa → Head of the Fibula Adjacent to the Medial Margin of the Biceps Femoris → Winds around neck of Fibula
   → divides into Deep & Superficial Fibular (peroneal) Nerves
- Innervates:

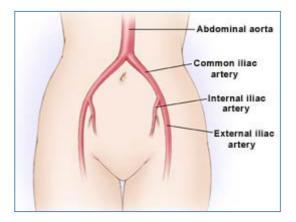
0

- o Skin of Lateral Aspect of Lower Leg
  - Skin of Dorsum of Foot
- Deep Fibular Nerve:
  - o Innervates:
    - Tibialis Anterior
    - Extensor Digitorum Longus
    - Fibularis Tertius
    - Extensor Hallucis Longus
- Superficial Fibular Nerve:
  - o Innervates:
    - Fibularis Longus
    - Fibularis Brevis

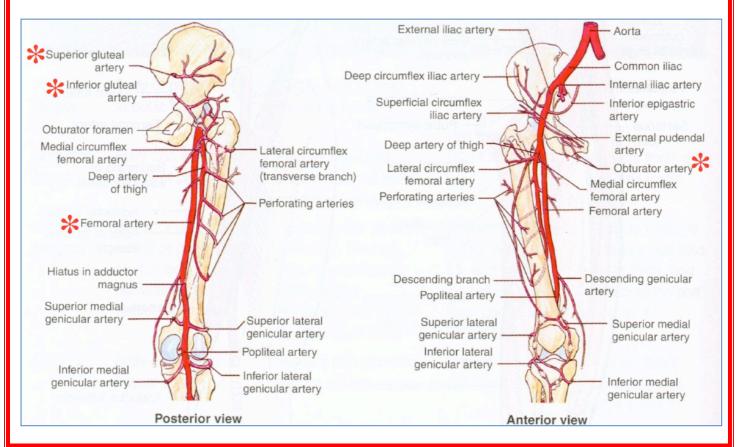








## Nerve Lesions:

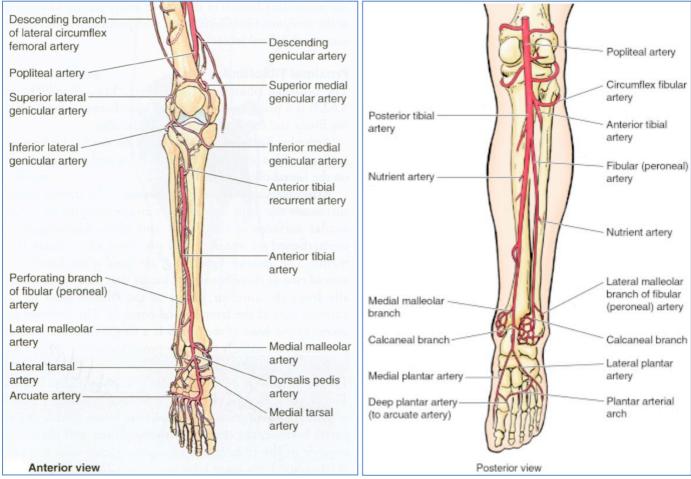
- o Most are incomplete lesions
- Can be disabling
- Eg. Femoral:
  - Loss of Extension of Knee
  - Loss of Flexion of Hip
- $\circ$  Eg. Obturator:
  - Loss of Adductors of Hip
  - Weird Gait
- o Eg. Tibial:
  - Loss of Plantar Flexion
  - Loss of Movement of Toes
- Eg. Deep Fibular:
  - Loss of Dorsiflexion → 'foot drop'
  - Loss of Extension of toes
- Eg. Superficial Fibular:
  - Loss of Eversion



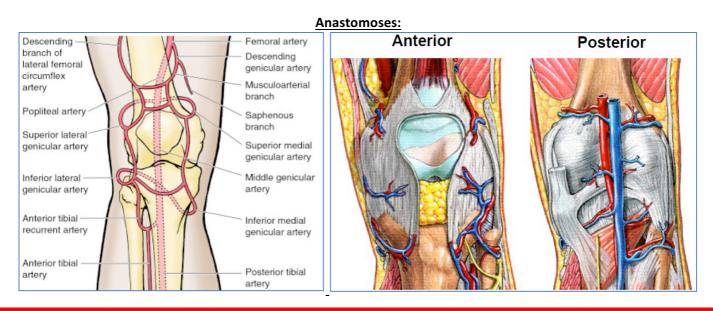

### Vasculation:

- Arterial Blood Supply:
  - Thoracic:
    - Abdominal Aorta →
  - Pelvic:
    - 2 Common Iliac Arteries →
      - Internal Iliac Artery → Pelvic & Reproductive Organs + Buttocks + Medial Thigh
        - Superior Gluteal Artery
        - Inferior Gluteal Artery
        - **Obturator Artery:** runs down & around the inside of the Pelvic 'bowl', escaping through the *Obturator Canal* (hole) in the *Obturator Membrane* of the *Obturator Foramen*.
      - External Iliac Artery → Thigh, Leg, Foot.




- o Upper Leg:
  - External Iliac Artery →
    - Deep Artery of the Thigh → branches into many perforating arteries
    - Femoral Artery → descends the femur, becoming more & more medial + posterior
       Popliteal Artery →




- o Lower Leg:
  - **Popliteal Artery + Genicular Anastomosis** → Runs down 1/3 of lower leg, then splits into:
    - Anterior Tibial Artery -
    - Posterior Tibial Artery Runs down posterior aspect of Tibia ightarrow ankle
    - Fibular Artery Runs down posterior aspect of Fibula  $\rightarrow$  ankle

o <u>Foot:</u>

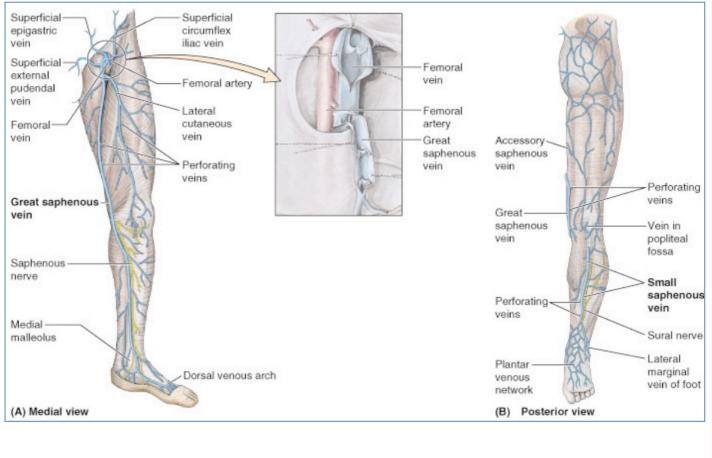
- Anterior Tibial Artery ightarrow
  - Dorsalis Pedis Artery
- Posterior Tibial Artery ->
  - Lateral Plantar Artery
  - Medial Plantar Artery



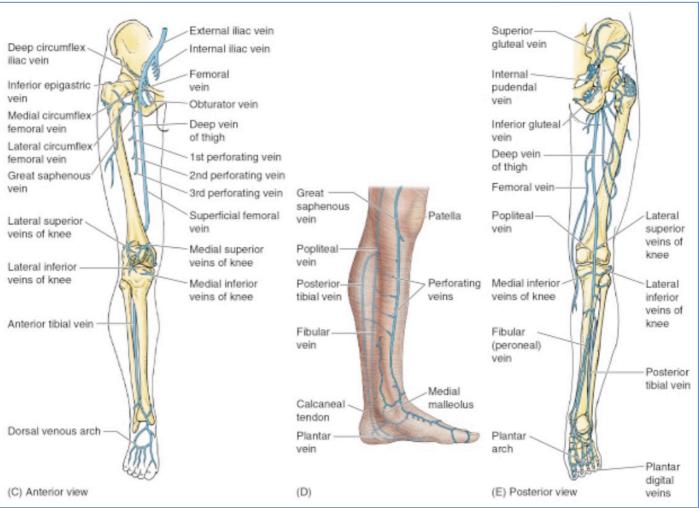




- Venous Blood Drainage:
  - o <u>Foot:</u>
    - Dorsal Venous Arch →
      - Superficial: Small Saphenous Vein
      - **Deep:** Anterior Tibial Vein
      - Plantar Venous Arch 🔿
        - Superficial: Great Saphenous Vein
        - Deep: Posterior Tibial Vein & Fibular Vein
  - o Lower & Upper Leg:
    - Superficial:

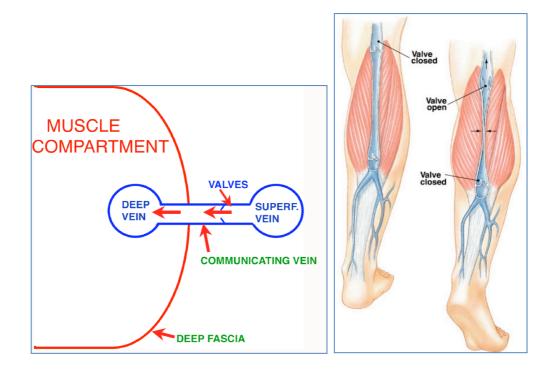

.

.


.

- Small Saphenous Vein → Runs up calves (posteriorly), goes deep → Popliteal Vein
- Great Saphenous Vein → All the way up the leg (medially) → Deep Femoral Vein
- Deep:
- Anterior Tibial Vein → Popliteal Vein
- Posterior Tibial Vein → Popliteal Vein
- Fibular Vein → Popliteal Vein
- <u>POPLITEAL VEIN → Deep Femoral Vein</u>
- <u>Pelvic:</u>
  - Deep Femoral Vein →
  - External Iliac Vein
- Thoracic:
  - External iliac Vein →
  - Inferior Vena Cava

## **Superficial Veins of Lower Limb:**







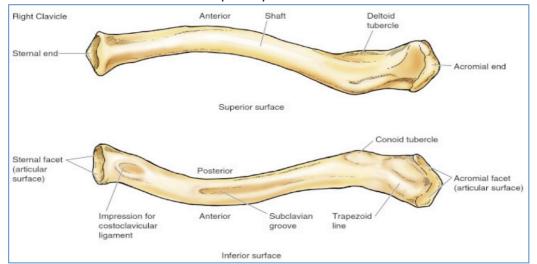

## **The Muscle Pump Mechanism**

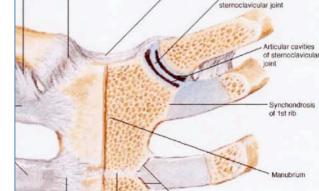
- Acts against gravity
- Relies on valves in veins
- Blood is squeezed by contracting muscles from Superficial  $\rightarrow$  Deep via Communicating Veins
- Valves prevent blood from flowing backwards and pooling (varicose veins = failure of valves  $\rightarrow$  pooling)



# Shoulder Region, Arm & Hand: Bones, Muscles, Nerves, Veins & Arteries.

### Shoulder Girdle (Pectorial Girdle):

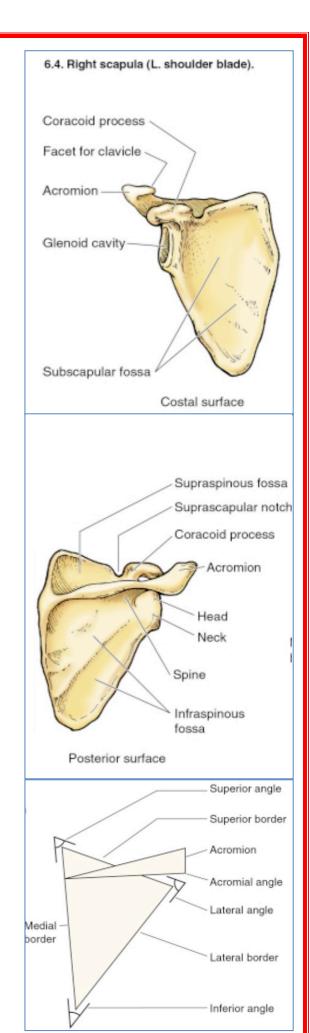

- Functions:
  - Manipulation of environment not locomotion
  - o Attaches upper limb to axial skeleton
  - Clavicle acts as 'strut' transmits force to axial skeleton.
    - Gives upper arm reach.
  - High Mobility, Low Stability.


## Bones & Landmarks:

- Manubrium of Sternum (breastplate)
  - o Flat bone
  - o Quadrangular shape
  - Articulations:
    - Syncondrosis of 1<sup>st</sup> rib
    - Sternocostal joint of 2<sup>nd</sup> rib
  - Origins/Insertions:
    - Pectoralis Major
    - One head of the Sternocleidomastoid

## • <u>Clavicle</u>

- $\circ\quad \text{Long bone}$
- Superior = Smooth, Inferior = Rough
- S-shaped
- Landmarks:
  - Sternal & Acromial Ends
  - Impression of costoclavicular ligament
  - Deltoid Tubercle
  - Conoid Tubercle
  - Trapezoid line
  - Subclavian Groove
- Articulations:
  - Manubrium of Sternum
  - Acromion of Scapula
- Origins/Insertions:
  - Deltoid Anteriorly on lateral 3<sup>rd</sup>
  - Trapezius
     Posteriorly on lateral 3<sup>rd</sup>
  - Subclavius
     Subclavian Groove
  - Pectoralis Major Anteriorly on medial 3<sup>rd</sup>
  - Sternocleidomastoid Superiorly on medial 3<sup>rd</sup>






Articular disc of

### Scapula

- o Irregular bone
- $\circ$  Connects Humerus  $\rightarrow$  Clavicle
- Landmarks:
  - Lateral Border
  - Medial Border
  - Superior Border
  - Inferior Angle
  - Superior Angle
  - Lateral Angle
  - Spine
  - Acromion
  - Coracoid Process
  - Suprascapular Notch
  - Supraspinous Fossa
  - Infraspinous Fossa
  - Subscapular Fossa
  - Glenoid Cavity
- Articulations:
  - Lateral ends of Clavicle
  - Head of Humerus
- Origins/Insertions:
  - Supraspinatus
  - Infraspinatus
  - Subscapularis
  - Deltoid
  - Trapezius
  - Serratus Anterior
  - Rhomboid Major
  - Rhomboid Minor
  - Levator Scapulae
  - Teres Major
  - Teres Minor
  - Pectoralis Minor
  - Long head of Triceps Brachii
  - Long head of Biceps Brachii
  - Short head of Biceps Brachii



Origin

Origin

Origin

Origin Insertion

Insertion

Insertion

Insertion

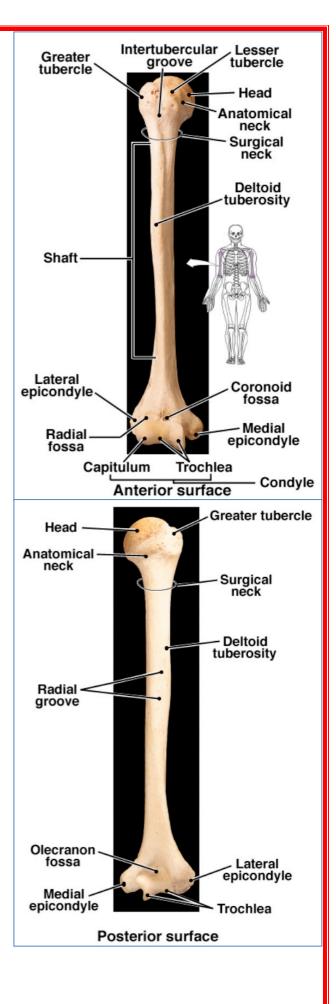
Insertion

Insertion

Insertion

Insertion

Origin


Origin

Origin

- Humerus
  - o Long Bone
  - Landmarks:
    - Head
    - Greater Tubercle
    - Lesser Tubercle
    - Intertubercular Groove
    - Deltoid Tuberosity
    - Medial Epicondyle
    - Lateral Epicondyle
    - Capitulum
    - Trochlea
    - Radial Groove
    - Olecranon Fossa
  - Articulations:

0

- Glenoid Process of Scapula
- Radius
- Ulnar
- **Origins/Insertions:** 
  - Supraspinatus
  - Subscaplaris
  - Pectoralis Major
  - Latissimus Dorsi
  - Deltoid Muscle
  - Teres Major
  - Teres Minor
  - Coracobrachialis
  - Brachialis
  - Extensor Carpi Radialis Longus
  - Extensor Carpi Radialis Brevis
  - Extensor Digitorum
  - Extensor Digitorum Minimi
  - Extensor Carpi Ulnaris
  - Protonator Teres
  - Flexor Carpi Radialis
  - Palmaris Longus
  - Flexor Carpi Ulnaris
  - Flexor Digitorum Superficialis



## Ulna: "Elbow"

- 'Little-Finger-Side' 0
- Slightly longer than Radius
- Wide at Proximal End
- Thin at Distal End
- Major forearm bone contributing to Elbow Joint
- Landmarks:
  - **Coronoid Process (Anterior Proximal)**
  - **Olecranon Process (Posterior Proximal)**
  - **Trochlear Notch**
  - Radial Notch (Articulates with Head of Radius)
  - Styloid Process of Ulna
  - Head of Ulna (Articulates with Wrist via Disc of Fibrocartilage)

#### Articulations: 0

- Trochlea of Humerus (Via Trochlear Notch between Coronoid & Olecranon Processes)
  - When fully extended, Olecranon Process 'Locks' into Olecranon Fossa of Humerus •
- **Bones of Wrist**
- Radius via Interosseous Membrane (flat, flexible ligament spanning entire length)

Insertion

Origin

Origin

Origin

### **Origins Insertions** 0

•

- **Brachialis** Insertion
- **Triceps Brachii**
- Anconeus
- Insertion Origin
- Flexor Carpi Ulnaris Flexor Digitorum Superficialis Origin
- Flexor Digitorum Profundus Origin
- **Pronator Quadratus**
- Origin **Pronator Teres** • Origin
- Supinator
- Abductor Pollicis Longus
- Extensor Pollicis Longus
- . **Extensor Pollicis Brevis**
- Origin **Extensor Indicis** Origin
- Extensor Carpi Ulnaris Origin

# Radius: "Rod"

- 'Thumb-Side' 0
- o Thin at Proximal end
- Wide at Distal end 0
- o Major forearm bone contributing to Wrist Joint
- Landmarks:
  - Head – concave (Articulates with Capitulum of Humerus)
  - . Neck
  - Radial Tuberosity – Anchors Biceps Brachii
  - Ulnar Notch (Articulates with Head of Ulna)
  - . **Styloid Process Of Radius**
  - Distal End Concave (Articulates with Carpal Bones of Wrist)

### **Articulations:** 0

- Humerus
- **Bones of Wrist**
- . Ulna - via Interosseous Membrane (flat, flexible ligament spanning entire length)

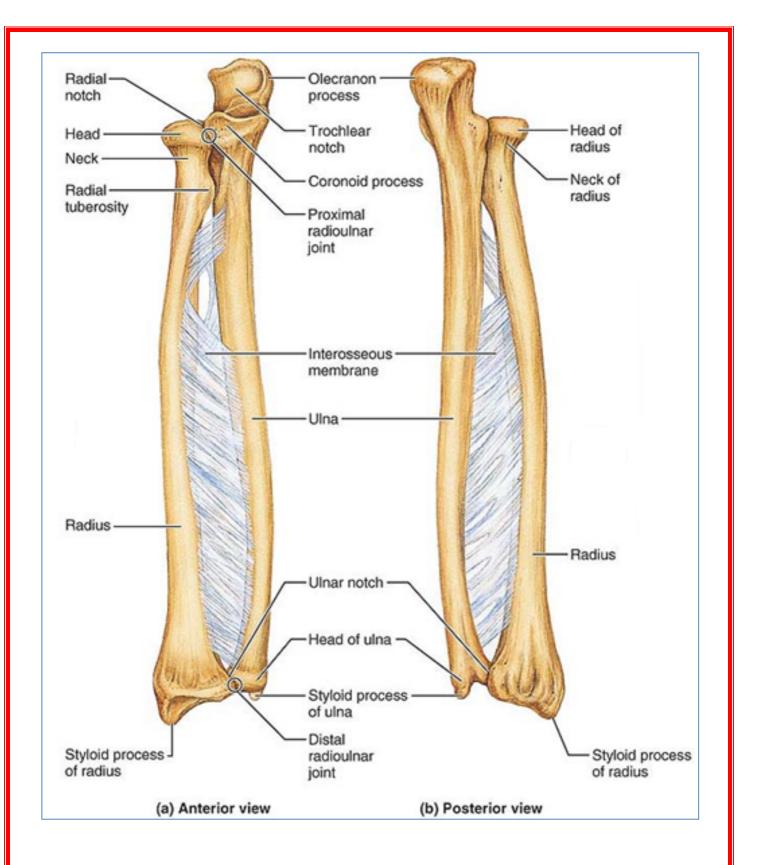
Insertion

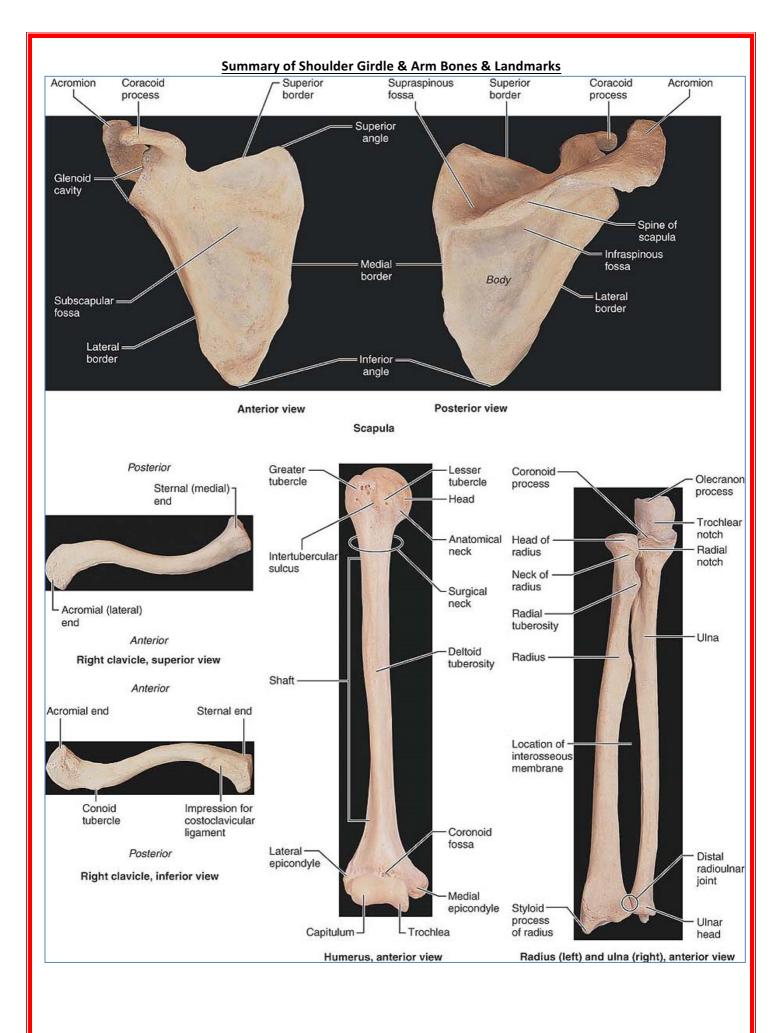
Insertion

Insertion

Insertion

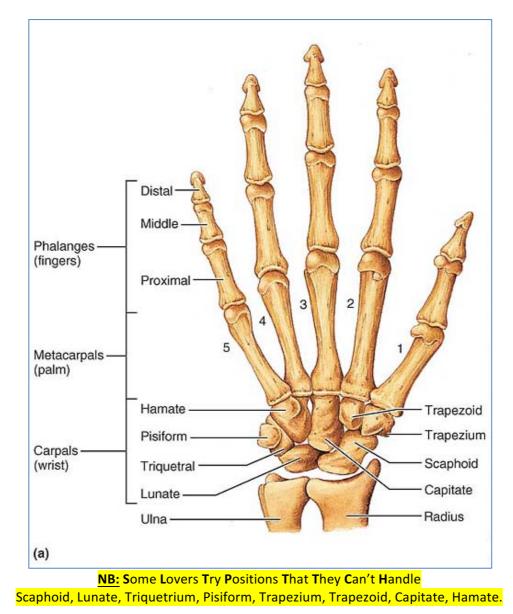
Insertion


Origin


Origin

#### **Origins Insertions** 0

•

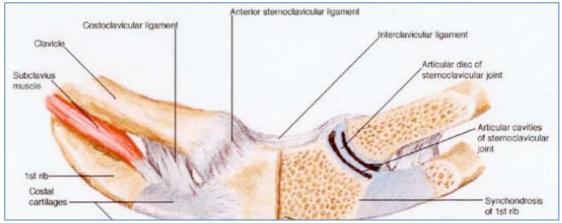

- **Pronator Teres** 
  - Pronator Quadratus
- . Supinator
- Biceps brachii
- Flexor Digitorum Superficialis Origin
- Flexor Pollicis Longus
- **Brachioradialis** 
  - Extensor Pollicis Longus
- Extensor Pollicis Brevis
- Origin Abductor Pollicis Longus Origin





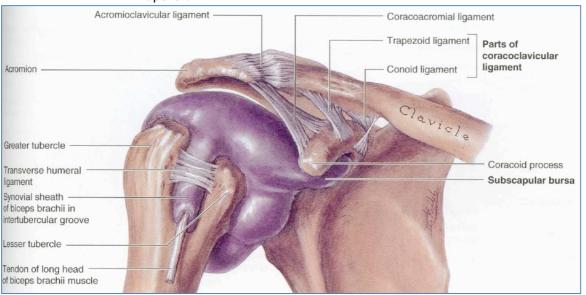
www.regentstudies.com

- <u>'Hand':</u>
  - Carpals ("Wrist"):
    - Trapezium
    - Trapezoid
    - Capitate
    - Hamate
    - Pisiform
    - Triquetral
    - Lunate
    - Scaphoid
  - Metacarpals ("Palm"):
    - Metacarpals # 1-5
  - Phalanges ("Fingers"):
    - Distal # 1-5
    - Middle # 1-5
    - Proximal # 1-5



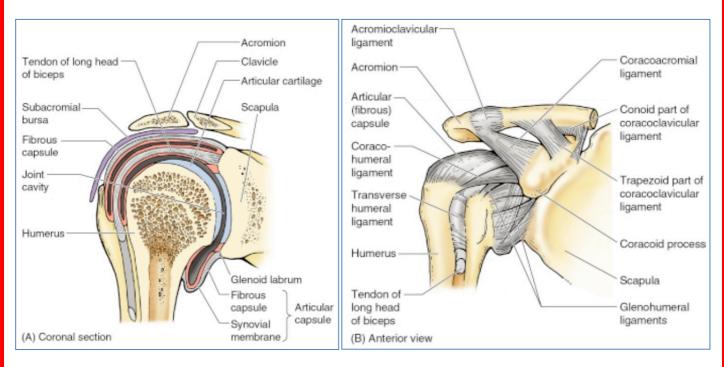

# Joints & Ligaments:

- <u>SternoClavicular Joint:</u>
  - Features:
    - The only joint that joins limb to axial skeleton.
    - Synovial Saddle Joint
    - Has an 'Articular Disc' (oval plate of fibrocartilage) for congruence between bones.
  - o Bones:
    - Manubrium of Sternum (superior lateral borders)
    - Clavicle (medial end)

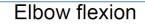

## • Ligaments:

- SternoClavicular Ligament
- InterClavicular Ligament
- CostoClavicular Ligament
  - (also the origin of the SubClavius Muscle)




### • AcromioClavicular Joint:

- Features:
  - Joins the Clavicle to the Acromion
  - Synovial Plane
  - Has an 'Articular Disc' (oval plate of fibrocartilage) for congruence between bones.
- o Bones:
  - Clavicle
  - Acromion of Scapula
- Ligaments:
  - Coracoacromial
  - Acromioclavicular
  - Coracoclavicular
    - Conoid
    - Trapezoid

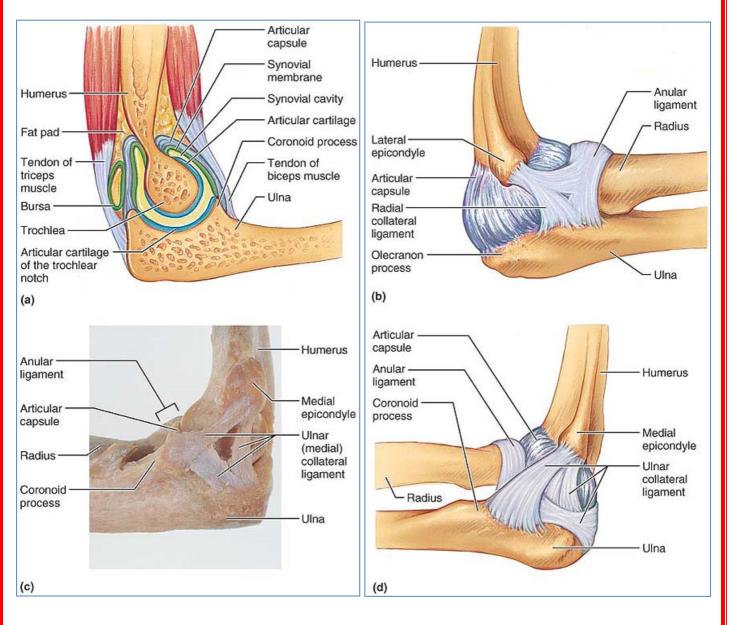


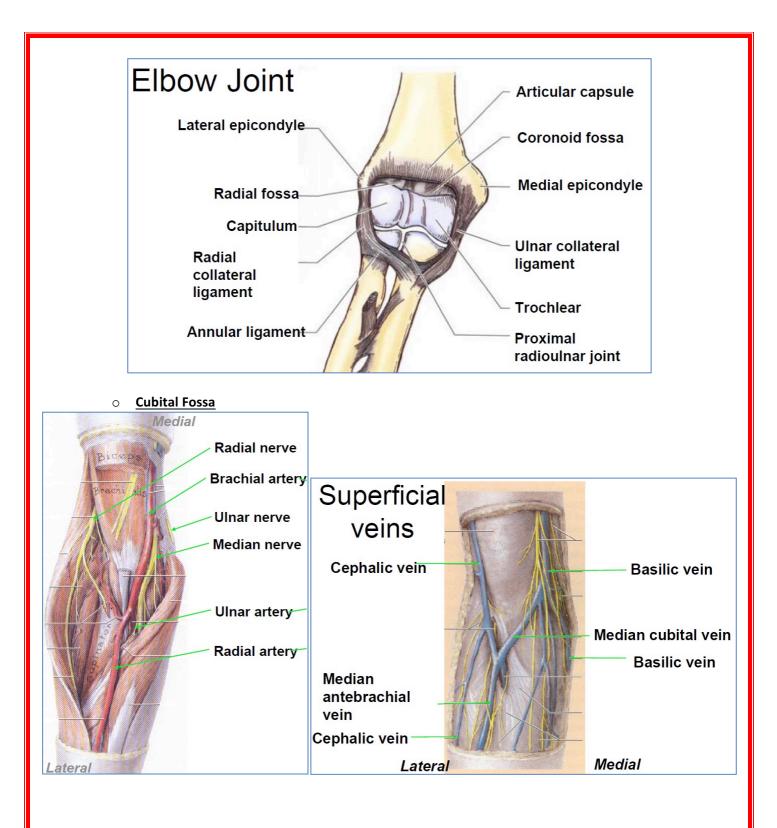

# GlenoHumeral Joint:

- Features:
  - Joins Humerous & Glenoid Fossa (cavity) of Scapula
  - Synovial ball & socket
  - Glenoid Fossa = Shallow  $\rightarrow$  allows huge angle of movement.
    - High Mobility
    - Low Stability
  - Glenoid Labrum: "Glenoid lip"
    - Ring of cartilage around Glenoid Fossa
    - Deepens socket
    - Helps with stability
  - SubAcromial (SubDeltoid) Bursa
    - Acts as a cushion
    - Reduces friction
    - Synovial Capsule
      - Very loose
      - Synovial sheath of Biceps Brachii
- o Bones:
  - Head of Humerus
  - Glenoid Fossa of Scapula
- Ligaments:
  - GlenoHumeral Ligaments
  - CoracoHumeral Ligament
  - Transverse Humeral Ligaments
    - Bridges the Intertubercular Groove
    - Tendon of Long Head of Biceps Brachii passes underneath
  - \*Fibrous (Articular) Capsule
    - Fused with Rotator Cuff muscles
    - Provides stability



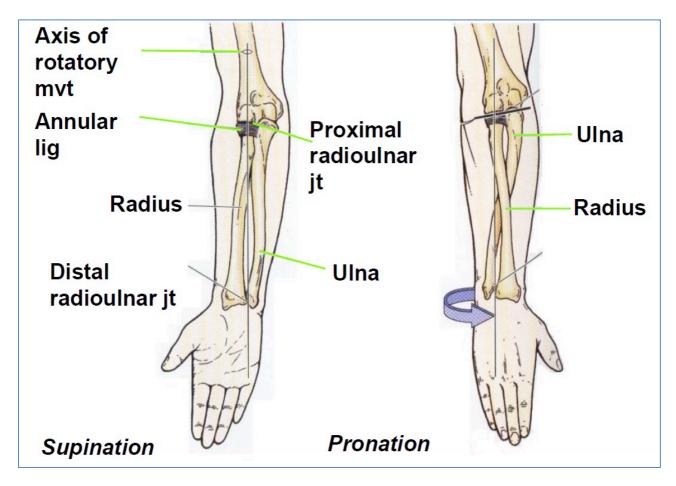
- Elbow Joint
  - HumeroUlnar Joint:
    - Features:
      - Joins Distal Humerus to Proximal Ulna
      - Synovial Hinge Joint
      - Uniaxial Flexion & Extension Only
      - Very Stable Due to Bony Congruency
        - & Ligaments
    - Bones:
      - Humerus
        - o Medial Epicondyle
          - Trochlear
          - Coronoid Fossa
        - Lateral Epicondyle
          - Capitulum
            - Radial Fossa
      - Ulna
    - Ligaments:
      - Ulnar Collateral Ligament
      - Annular Ligament
      - Radial Collateral Ligament



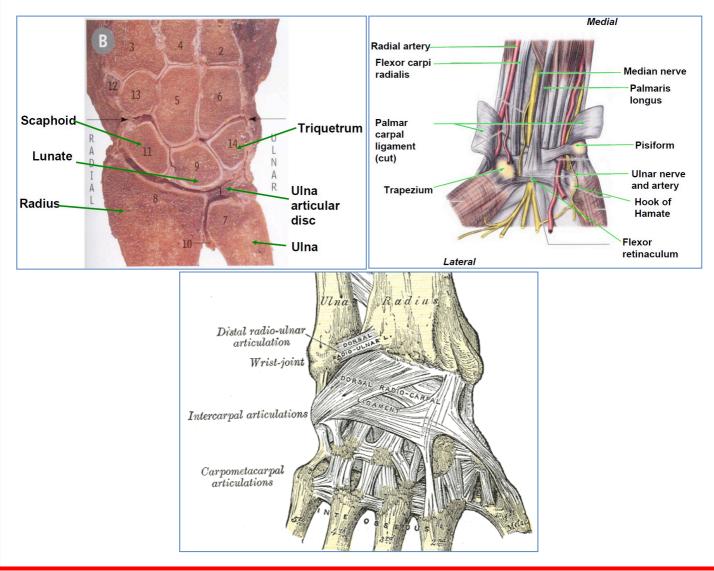


- C5, C6
- Anterior compartment (arm) – Brachialis
  - Biceps brachii
    - Musculocutaneous nerve
- Posterior compartment (forearm)

   Brachioradialis
   Radial nerve

# Elbow Extension

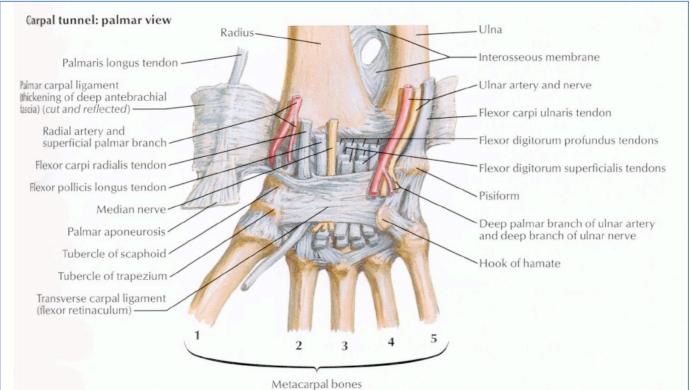

- C7 and C8
- Posterior compartment (arm)
  - Triceps brachii
  - Aconeus

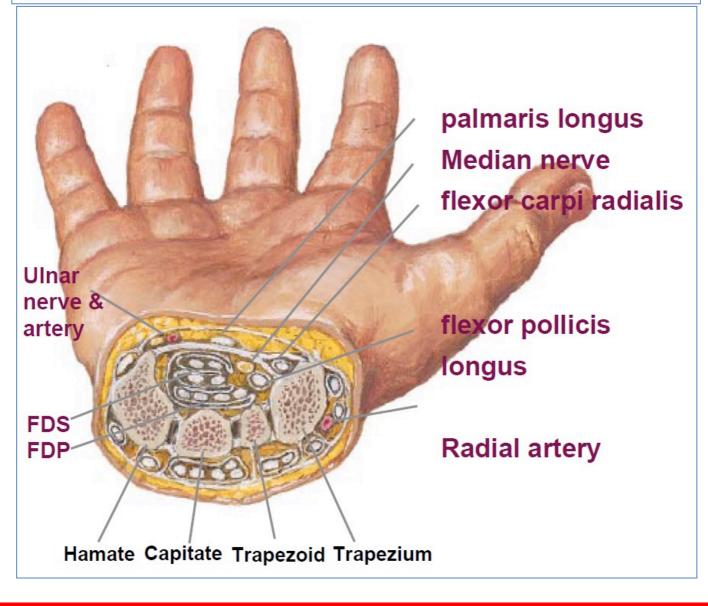


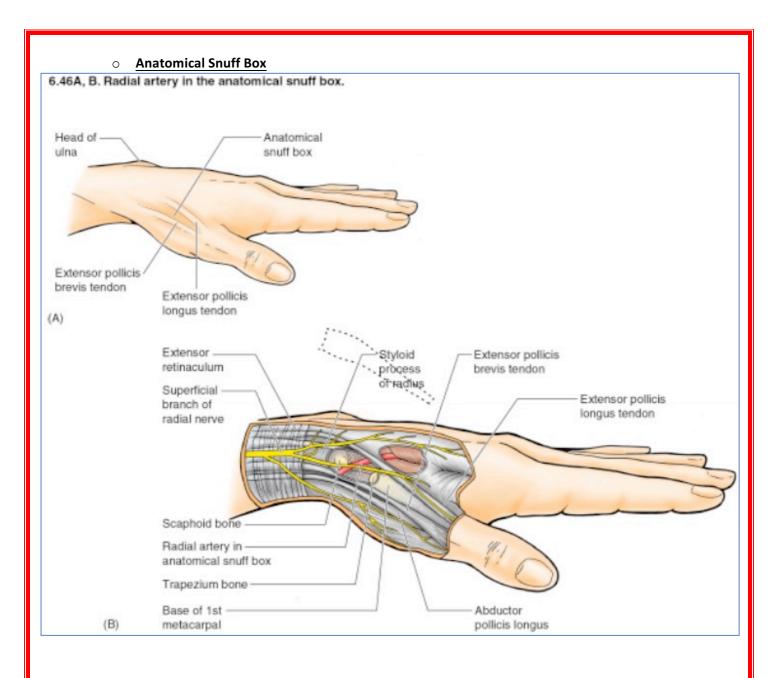



# <u>RadioUlnar Joint:</u>

- Proximal:
  - Features:
    - Joins Radius & Ulna
    - Synovial Pivot Joint
    - Uniaxial Pronation & Supination Only
    - Bones:
      - Radius
      - Ulna
    - Ligaments:
      - Annular Ligament
  - o <u>Distal:</u>
    - Features:
      - Joins Radius & Ulna
      - Synovial Pivot + Articular Disc
      - Uniaxial Pronation & Supination Only
    - Bones:
      - Radius
      - Ulna
    - Ligaments:
      - Dorsal RadioUlnar Ligament
      - Volar RadioUlnar Ligament





- Wrist Joint:
  - CarpiRadialis Joint:
    - Features:
      - Joins Radius & Proximal Carpals
      - Synovial Condyloid
      - Biaxial: Flexion/Extension + Abduciton/Adduction = Circumduction
    - Movement (C6 + C7):
      - Flexion:
        - o Flexor Carpi Radialis
        - o Flexor Carpi Ulnaris
      - Extension:
        - Extensor Carpi Radialis Longus & Brevis
        - o Extensor Carpi Ulnaris
      - Abduction:
        - Extensor Pollicis Longus
          - Flexor Carpi Radialis + Extensor Carpi Radialis (Longus & Brevis)
      - Adduction:
        - Extensor Carpi Ulnaris + Flexor Carpi Ulnaris
    - Bones:
      - Radius
      - Proximal Carpals
    - Ligaments:
      - Palmar Carpal Ligament
      - Flexor Retinaculum (Transverse Carpal Ligament) Roof of Carpal Tunnel
      - Dorsal RadioCarpal Ligament




www.regentstudies.com

# o Carpal Tunnel (Anterior Aspect)





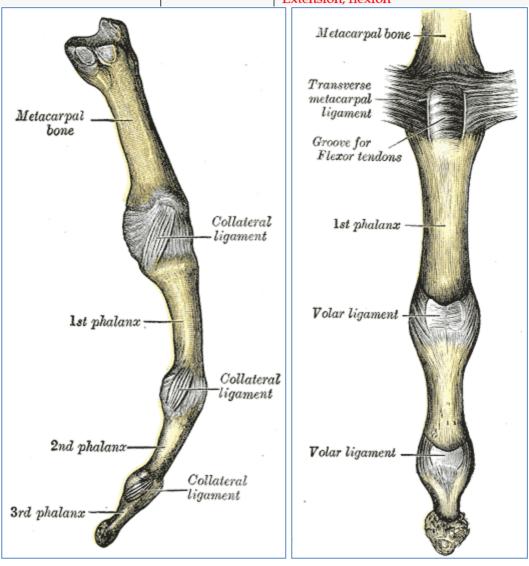


# InterCarpal Joints:

- Features:
  - Joins Adjacent Carpals
  - Synovial Plan
- o Bones:
  - Trapezium
  - Trapezoid
  - Capitate
  - Hamate
  - Pisiform
  - Triquetral
  - Lunate
  - Scaphoid
- Ligaments:
  - The various Palmar Intercarpal Ligaments

# • <u>CarpoMetacarpal Joints:</u>

- o Digit 1 (Thumb):
  - Features:
    - Joins Trapezium & Metacarpal 1
    - Synovial Saddle
    - Biaxial: Flexion/Extension + Abduction/Adduction = Circumduction + Opposition
  - Bones:
    - Carpal: Trapezium
    - Metacarpal #1: Thumb
  - Ligaments:
- o **Digits 2-5:** 
  - Features:
    - Joins Distal Carpals & Metacarpals 2-5
    - Synovial Plane
  - Bones:
    - Trapezoid
    - Capitate
    - Hamate
    - &
    - Metacarpals 2-5
  - Ligaments:
    - The various CarpoMetacarpal Ligaments

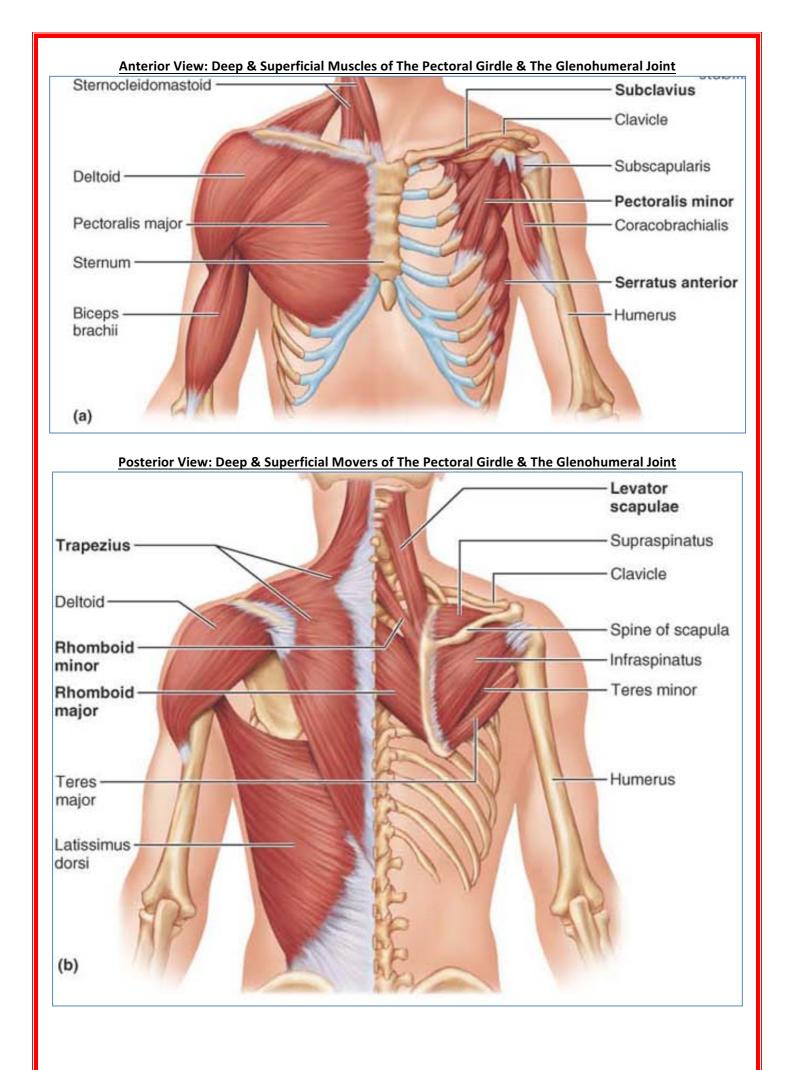

# Metacarpo-Phalangeal Joints (Knuckes):

- Features:
  - Joins Metacarpals & Phalanges
  - Synovial Condyloid
  - Biaxial: Flexion/Extension + Abduciton/Adduction = Circumduction
- o Bones:
  - Metacarpals 1-5
  - Phalanges 1-5
- Ligaments:
  - Collateral Ligaments
  - Transverse Metacarpal Ligament
  - Joint Capsules

## • InterPhalangeal Joints (Fingers):

- Features:
  - Joins adjacent Phalanges
  - Synovial Hinge
    - Uniaxial Flexion/Extension Only
- o Bones:
  - Proximal, Middle & Distal Phalanges 1-5
- Ligaments:
  - Collateral Ligaments
  - Joint Capsules

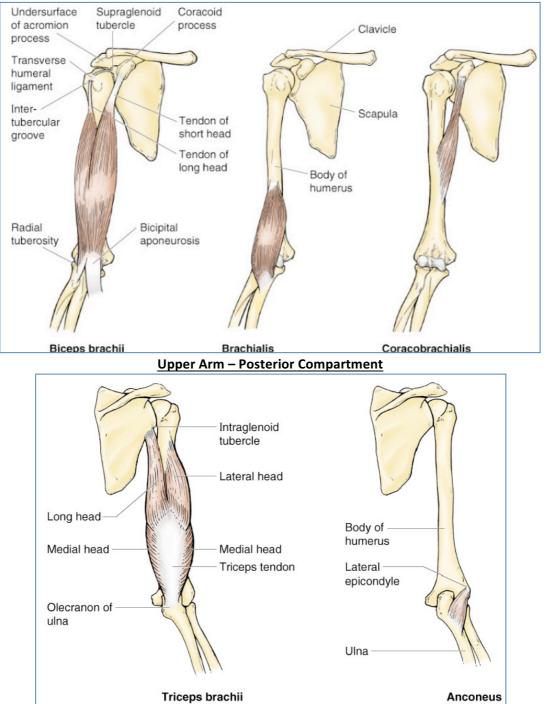
| Joint                                              | Synovial type | Movements                      |
|----------------------------------------------------|---------------|--------------------------------|
| Intercarpal                                        | plane         |                                |
|                                                    |               | gliding                        |
| 1 <sup>st</sup> Carpometacarpal                    | saddle        |                                |
|                                                    |               | Extension, flexion, abduction, |
|                                                    |               | adduction, circumduction,      |
|                                                    |               | oppositon                      |
| 2 <sup>nd</sup> to 5 <sup>th</sup> Carpometacarpal | plane         |                                |
|                                                    |               | gliding                        |
| Metacarpophalangeal                                | Condyloid     |                                |
|                                                    |               | Extension, flexion, abduction, |
|                                                    |               | adduction, circumduction       |
| Interphalangeal                                    | Hinge         |                                |
|                                                    |               | Extension, flexion             |




## Muscles:

| Move Pectora      | l Girdle (Clavicle & Scapula):                    |                                        |
|-------------------|---------------------------------------------------|----------------------------------------|
| Muscle            | Origins/Insertions                                | Action                                 |
| Trapezius         | O – Occipital bone →Thoracic Vertebrae            | Superior Fibres – Elevate Scapula      |
|                   | I – Spine of Scapula, Acromion & Lateral Clavicle | Middle Fibres – Retract Scapula        |
|                   |                                                   | Inferior Fibres – Depress Scapula      |
| SubClavius        | O – Costal Cartilage of Rib 1                     | Stabilises & Depresses Pectoral Girdle |
|                   | I – Groove on inferior surface of Clavicle        |                                        |
| Rhomboid Major    | O – Spinous Processes of $T_2 \rightarrow T_5$    | Retracts Scapula                       |
|                   | I – Lower Medial Border of Scapula                | Medial Rotation of Scapula             |
| Rhomboid Minor    | O – Spinous Processes of $C_7 \rightarrow T_1$    | Retracts Scapula                       |
|                   | I – Upper Medial Border of Scapula                | Medial Rotation of Scapula             |
| Levator Scapulae  | O – Transverse Processes of $C_1 \rightarrow C_4$ | Elevates Scapula                       |
|                   | I – High Medial Border of Scapula                 | Medial Rotation of Scapula             |
|                   |                                                   | Flexes Neck to same side.              |
| Pectoralis Minor  | O – Anterior Surface of Ribs 3→5                  | Draws Scapula forwards & downwards     |
|                   | I – Coracoid Process of Scapula                   |                                        |
| Serratus Anterior | $O - Ribs 1 \rightarrow 8$                        | Protraction of Scapula                 |
|                   | I – Anterior Surface of Medial Border of Scapula  | Any Horizontal Arm Movements           |
|                   |                                                   | (pushing/punching)                     |

# • Move Humerus (Shoulder Joint):

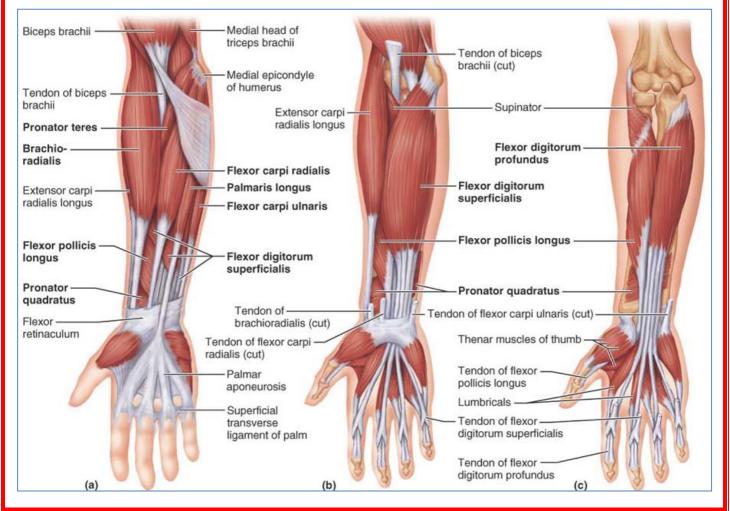

| Iviove Humer       | us (Shoulder Joint):                                |                                               |
|--------------------|-----------------------------------------------------|-----------------------------------------------|
| <u>Muscle</u>      | Origins/Insertions                                  | Action                                        |
| (RC) Supraspinatus | O – Supraspinous Fossa of Scapula                   | Abduction of Humerus                          |
|                    | I – Greater Tubercle of Humerus                     | Helps prevent downward dislocation of Humerus |
| (RC) Infraspinatus | O – Infraspinous Fossa of Scapula                   | Lateral Rotation of Humerus                   |
|                    | I – Greater Tubercle of Humerus                     | Stabilises Shoulder Joint                     |
| (RC) Subscapularus | O – Subscapular Fossa of Scapula                    | Medial Rotation of Humerus                    |
|                    | I – Lesser Tubercle of Humerus                      | Stabilises Shoulder Joint                     |
| (RC) Teres Minor   | O – Lateral Border of Scapula                       | Lateral Rotation of Humerus                   |
|                    | I – Greater Tubercle of Humerus                     | Stabilises Shoulder Joint                     |
| Deltoid            | O – Lateral 3 <sup>rd</sup> of Clavicle, Acromion & | Abduction of Humerus                          |
|                    | Spine of Scapula                                    | Flexion & Medial Rotation of Humerus          |
|                    | I – Deltoid Tuberosity of Humerus                   | Extension & Lateral Rotation of Humerus       |
| Teres Major        | O – Inferior Angle of Scapula                       | Adduction of Humerus                          |
|                    | I – Intertubercular Sulcus of Humerus               | Medial Rotation of Humerus                    |
|                    |                                                     | Posterio-Medial Extension                     |
| Latissimus Dorsi   | O – Spines of lower 6 Thoracic Vertebrae,           | Arm Extension                                 |
|                    | Lower 3-4 Ribs, Lumbar Vertebrae & Iliac            | Adduction of Humerus                          |
|                    | Crest of Pelvis.                                    | Medial Rotation                               |
|                    | I – Intertubercular Sulcus of Humerus               | Depression of Scapula                         |
| Pectoralis Major   | O – Sternal end of Clavicle, Sternum,               | Arm Extension                                 |
|                    | Aponeurosis of External Oblique Muscle              | Medial Rotation of Humerus                    |
|                    | & Ribs 1-6                                          | Adduction of Humerus                          |
|                    | I – Greater Tubercle of Humerus                     |                                               |



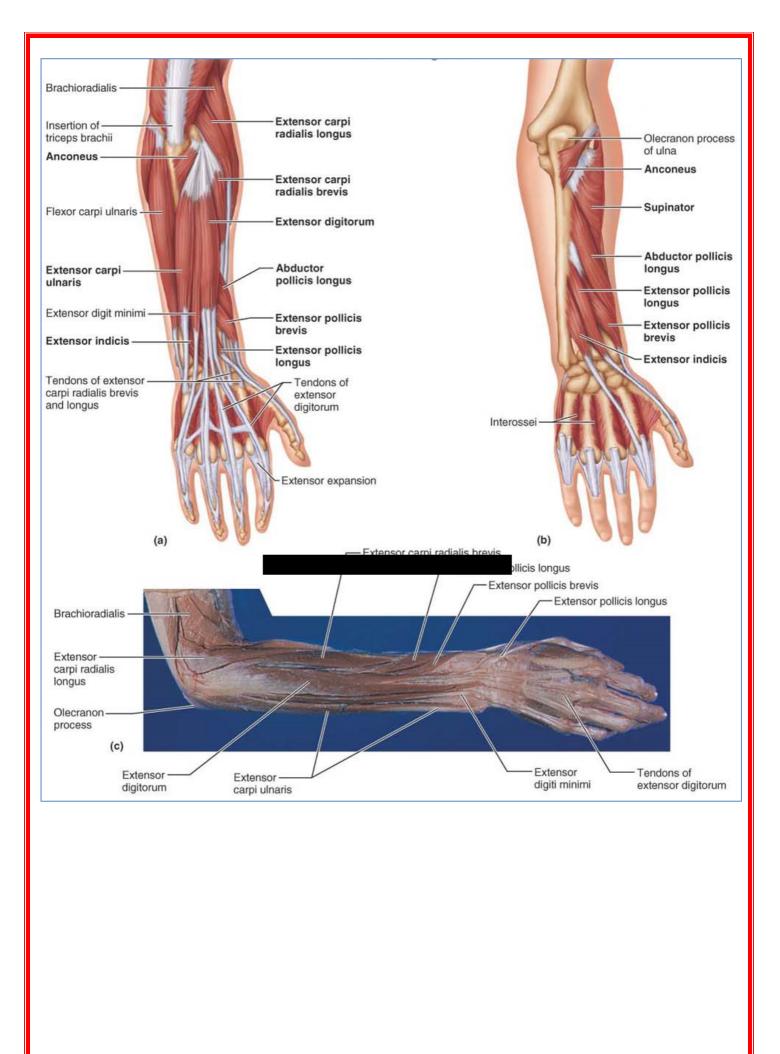
### Muscles Crossing the Shoulder Joint: Movements of the Arm MUSCLE GALLERY TABLE 10.9 (Figure 10.14) (continued) Clavicle Supraspinatus\* Spine of scapula Deltoid (cut) Greater tubercle of humerus Deltoid Infraspinatus\* Sternum Teres minor\* Pectoralis major Teres major Coracobrachialis Triceps brachii: Triceps brachii: · Lateral head Lateral head · Long head Long head Medial head Latissimus dorsi Biceps brachii Brachialis Brachio-Humerus radialis Olecranon process of ulna Anconeus (a) (d) Subscapularis\* Coraco-Long head brachialis Biceps Short head brachii Brachialis O = origin I = insertion (b) (c)

| Muscle                              | Origins/Insertions                                 | Action                       |
|-------------------------------------|----------------------------------------------------|------------------------------|
| <mark>(Ant)</mark> Biceps Brachii   | O – Long Head: SupraGlenoid Tubercle               | Flexion of the Elbow Joint   |
|                                     | Short Head: Coracoid Process                       | Supinates the Forearm        |
|                                     | I – Radial Tuberosity                              |                              |
| <mark>(Ant)</mark> Brachialis       | O – Distal 1/3 of Anterior Humerus                 | Flexion of the Elbow Joint   |
|                                     | I – Coronoid Process of Ulna                       | (synergist of Biceps.B)      |
| <mark>(Ant)</mark> Coracobrachialis | O – Coracoid Process of Scapula                    | Flexion of Humerus           |
|                                     | I – Medial surface of Humerus Shaft                | Adduction of Humerus         |
| <mark>(Post)</mark> Triceps Brachii | O – Long Head: InfraGlenoid Tubercle of Scapula.   | Extension of Elbow Joint     |
|                                     | Lateral Head: Posterior Proximal Shaft of Humerus. | (Long head tendon assists in |
|                                     | Medial Head: Posterior Distal Shaft of Humerus.    | adduction of arm)            |
|                                     | I – Olecranon Process of Ulna                      |                              |
| <mark>(Post)</mark> Anconeus        | O – Lateral Epicondyle of Humerus                  | Extension of Elbow Joint     |
|                                     | I – Lateral side of Olecranon Process of Ulna      | Abduction of Ulna            |



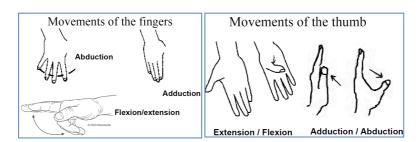



# Muscles of the Forearm:

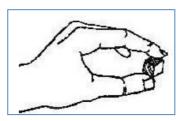

| <ul> <li>Anterior (FLEXO)</li> </ul> | RS) - Superficial:                                        |                               |
|--------------------------------------|-----------------------------------------------------------|-------------------------------|
| Muscle                               | Origins/Insertions                                        | Action                        |
| Pronator Teres                       | O – Medial Epicondyle of Humerus & Coronoid               | Pronation of Forearm          |
|                                      | Process of Ulna                                           |                               |
|                                      | I – Lateral Midshaft of Radius.                           |                               |
| Flexor Carpi Radialis                | O – Medial Epicondyle of Humerus                          | Flexion of Wrist              |
|                                      | I – Base of 2 <sup>nd</sup> & 3 <sup>rd</sup> Metacarpals | Abduction of Hand             |
| Palmaris Longus                      | O – Medial Epicondyle of Humerus                          | Tenses Skin & Fascia of Palm  |
|                                      | I – Palmar Aponeurosis                                    | Flexion of Wrist              |
| Flexor Carpi Ulnaris                 | O – Medial Epicondyle of Humerus,                         | Flexion of Wrist              |
|                                      | Olecranon Process of Ulna                                 | Adduction of Hand (in concert |
|                                      | Posterior Surface of Ulna                                 | with Extensor Carpi Ulnaris)  |
|                                      | I – Pisiform & Hamate Bones                               |                               |
|                                      | + Base of 5 <sup>th</sup> Metacarpal                      |                               |
| Flexor Digitorum Superficialis       | O – Medial Epicondyle of Humerus,                         | Flexion of Wrist & Middle     |
|                                      | Coronoid Process of Ulna, Shaft of Radius                 | Phalanges of Fingers 2-5.     |
|                                      | I – Middle Phalanges of Fingers 2-5.                      |                               |

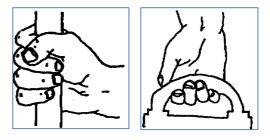
### • Anterior (FLEXORS) - Deep:

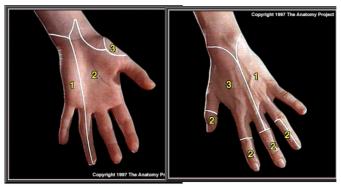
| Muscle                     | Origins/Insertions                                | Action                               |
|----------------------------|---------------------------------------------------|--------------------------------------|
| Flexor Pollicis Longus     | O – Anterior Proximal Radius                      | Flexes Distal Phalanx of Thumb       |
|                            | I – Distal Phalanx of Thumb                       |                                      |
| Flexor Digitorum Profundus | O – Coronoid Process of Ulna                      | Flexor of any/all of Fingers 2-5     |
|                            | I – Four Tendons $ ightarrow$ Distal Phalanges of | - the only muscle that flexes Distal |
|                            | Fingers 2-5.                                      | Interphalangeal Joints.              |
| Pronator Quadratus         | O – Distal Anterior Ulnar Shaft                   | Forearm Pronation                    |
|                            | I – Distal Anterior Radial Shaft                  | Helps hold Ulna & Radius together    |
|                            |                                                   |                                      |




| <ul> <li>Posterior (EXTEN)</li> </ul> | ISORS | a) - Superficial:                                                  |        |                                                   |
|---------------------------------------|-------|--------------------------------------------------------------------|--------|---------------------------------------------------|
| Muscle                                |       | Origins/Insertions                                                 |        | Action                                            |
| BrachioRadialis                       | 0 –   | Lateral SupraCondylar Ridge of                                     | Syne   | rgist in forearm flexion.                         |
|                                       | Hun   | nerus                                                              | Stab   | ilises Elbow Joint during rapid                   |
|                                       | I – B | ase of Styloid Process of Radius                                   | flexio | on/extension.                                     |
| Extensor Carpi Radialis Longus        | 0 –   | Lateral SupraCondylar Ridge of                                     | Exter  | nsion of Wrist (Along with Extensor               |
|                                       |       | nerus                                                              |        | i Ulnaris)                                        |
|                                       | I – B | ase of 2 <sup>nd</sup> Metacarpal                                  |        | action of Wrist (Along with Flexor                |
|                                       |       |                                                                    |        | i Radialis)                                       |
| Extensor Carpi Radialis Brevis        |       | Lateral Epicondyle of Humerus                                      |        | nsion of Wrist                                    |
|                                       |       | ase of 3 <sup>rd</sup> Metacarpal                                  |        | uction of Wrist                                   |
| Extensor Digitorum                    |       | Lateral Epicondyle of Humerus                                      |        | nsion of Fingers                                  |
|                                       |       | our Tendons $\rightarrow$ Distal Phalanges of                      | Exte   | nsion of Wrist                                    |
|                                       | -     | ers 2-5.                                                           |        |                                                   |
| Extensor Digit Minimi                 |       | Lateral Epicondyle of Humerus                                      |        | nsion of 'little finger'                          |
|                                       |       | Pistal Phalanx of 5 <sup>th</sup> Finger                           |        | s in extension of wrist                           |
| Extensor Carpi Ulnaris                |       | Lateral Epicondyle of Humerus<br>ase of 5 <sup>th</sup> Metacarpal |        | nsion of Wrist (Along with Extensor               |
|                                       | I – B | ase of 5 Metacarpai                                                |        | i Radialis)<br>uction of Wrist (Along with Flexor |
|                                       |       |                                                                    |        | i Ulnaris)                                        |
|                                       |       |                                                                    | Carp   | i Olitalisj                                       |
| <ul> <li>Posterior (EXTEN</li> </ul>  | ISORS | ) – Deep                                                           |        |                                                   |
| Muscle                                |       | Origins/Insertions                                                 |        | Action                                            |
| Supinator                             |       | O – Lateral Epicondyle of Humerus                                  |        | Supination of Forearm                             |
|                                       |       | & Proximal Ulna                                                    |        |                                                   |
|                                       |       | I – Proximal End of Radius                                         |        |                                                   |
| Abductor Pollicis Longus              |       | O – Posterior Surfaces of Ulna & Rac                               |        | Abducts & Extens Thumb                            |
|                                       |       | I – Base of 1 <sup>st</sup> Metacarpal & Trapeziu                  |        | Abducts Wrist                                     |
| Extensor Pollicis Longus              |       | O – Mid Shaft Surfaces of Ulna & Ra                                | dius   | Extension of Thumb                                |
|                                       |       | I – Base of Distal Phalanx of Thumb                                |        |                                                   |
| Extensor Pollicis Brevis              |       | O – Mid Shaft Surfaces of Ulna & Ra                                |        | Extension of Thumb                                |
|                                       |       | I – Base of Proximal Phalanx of Thun                               | nb     |                                                   |
| Extensor Indicis                      |       | O – Posterior, Distal Ulna                                         |        | Extension of Index Finger                         |
|                                       |       | I – Extensor Expansion of Index Fing                               |        | Extension of Wrist                                |
|                                       |       | Joins Tendon of Extensor Digitoru                                  | ım     |                                                   |





# The Hand:


Movements:

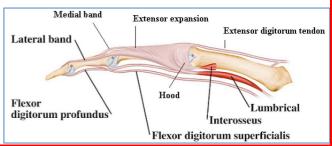


- Grips:
  - Precision Grip:
    - Flexion of digits (esp. At MCP joints)
    - Short Intrinsic Muscles
    - Opposition of thumb
    - Best when wrist is extended.
  - Power Grip:
    - Flexion of IP & MCP Joints
      - Powerful Extrinsic Flexor Muscles
    - Best when wrist is extended
    - Eg:
      - Palmar Grip
        - Hook Grip
  - o **Dermatomes:**








1. Ulnar; 2. Median; 3. Radial

## • Innervation:

- Motor:
  - Ulnar Hypothenar Muscles, Lumbricals 3 & 4, Interossei. (Over Carpal Tunnel)
  - Median Thenar Muscles, Lumbricals 1 & 2. (Through Carpal Tunnel)
  - **<u>NB:</u>** 'Communicating Nerve' Connects Median & Ulnar Nerve Networks in Palm.

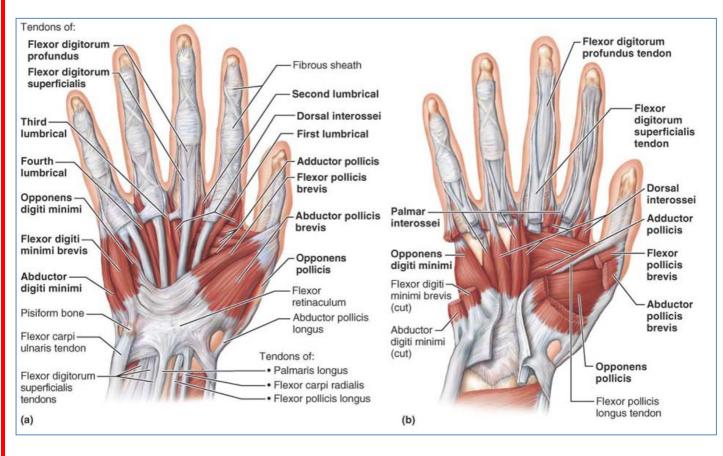
## • Extensor Expansion:

- Is the flattened tendons of the Long Extrinsic Extensors
- Enables Lumbricals & Interossei to Flex the Digits @ MCP Joints, & Extend IP Joints Simultaneously.
- 2 Bands:
  - Median to middle phalanx
  - 2x Lateral to distal phalanx



### • Intrinsic Muscles of the Hand:

- Precision movements
- o Short muscles & tendons
- o Small Motor Units.
- o Thenar/Hypothenar/Midpalmar (lumbricals/Interossei)
- o Thenar Muscles:
  - "Ball" of the Thumb.
  - Median Nerve (Except \*Adductor Pollicis = Ulnar Nerve)
  - \*Adductor Pollicis isn't part of the 'Thenar' group, but is included as it acts on the thumb.


| Muscle                   | Origins/Insertions                           | Action                                  |
|--------------------------|----------------------------------------------|-----------------------------------------|
| Abductor Pollicis Brevis | O – Flexor Retinaculum (& some carpals)      | Abducts thumb                           |
|                          | I – Lateral base of Thumb's Proximal Phalanx | (at carpometacarpal joint)              |
| Flexor Pollicis Brevis   | O – Flexor Retinaculum & Trapezium           | Flexes thumb                            |
|                          | I – Lateral Base of Thumb's Proximal Phalynx | (at carpometacarpal &                   |
|                          |                                              | metacarpophalangeal joints)             |
| Opponens Pollicis        | O – Flexor Retinaculum & Trapezium           | Opposition of thumb $\rightarrow$ pinky |
|                          | I – Whole anterior side of Metacarpal 1      |                                         |
| *Adductor Pollicis       | O – Capitate bone & bases of Metacarpals 2-4 | Adduction of Thumb                      |
|                          | I – Medial Base of Thumb's Proximal Phalanx  | Opposition of Thumb                     |

### • Hypothenar Muscles:

"Ball" of the Little Finger

Ulnar Nerve

| Muscle                      | <b>Origins/Insertions</b>              | <u>Action</u>               |
|-----------------------------|----------------------------------------|-----------------------------|
| Abductor Digiti Minimi      | O – Pisiform Bone                      | Abducts the Little Finger   |
|                             | I – Medial side of Proximal Phalanx #5 |                             |
| Flexor Digiti Minimi Brevis | O – Hamate Bone & Flexor Retinaculum   | Extension of Little Finger  |
|                             | I – Medial side of Proximal Phalanx #5 |                             |
| Opponens Digiti Minimi      | O – Hamate Bone & Flexor Retinaculum   | Opposition of Little Finger |
|                             | I – Medial side of Metacarpal #5       |                             |



| 0                      | <u>Lumbricals:</u>                                                                                            |                                                                                                                                                                             |                                                    |
|------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                        |                                                                                                               | m-shaped muscles                                                                                                                                                            |                                                    |
|                        | <ul> <li>In the</li> </ul>                                                                                    |                                                                                                                                                                             |                                                    |
|                        |                                                                                                               | o each finger (except thumb)                                                                                                                                                |                                                    |
|                        | Media                                                                                                         | an Nerve (Lateral 2) & Ulnar Nerve (Medial 2)                                                                                                                               | T                                                  |
| <u>Mus</u>             | <u>cle</u>                                                                                                    | Origins/Insertions                                                                                                                                                          | Action                                             |
| Lumbrical 1 – Ir       | ndex Finger                                                                                                   | O – Lateral side of each of the 4 Tendons of                                                                                                                                | Flexion of Matacarpophalangeal                     |
| Lumbrical 2 – N        | /liddle Finger                                                                                                | Flexor Digitorum Profundus in the palm.                                                                                                                                     | Joints.                                            |
| Lumbrical 3 – R        | ling Finger                                                                                                   | I – Lateral edge of extensor on 1 <sup>st</sup> phalanx of                                                                                                                  | Extension at Interphalangeal Joints.               |
| Lumbrical 4 – L        | ittle Finger                                                                                                  | fingers 2-5.                                                                                                                                                                |                                                    |
| 0                      | <u>Interossei:</u><br>■ <u>Palma</u><br>●                                                                     | ar Interossei: (PAD – Palmar Adduct Fingers)<br>4 long, cone-shaped muscles                                                                                                 |                                                    |
| 0                      |                                                                                                               | ar Interossei: (PAD – Palmar Adduct Fingers)<br>4 long, cone-shaped muscles<br>In spaces between metacarpals<br>Absent on metacarpal #3                                     |                                                    |
| 0                      |                                                                                                               | 4 long, cone-shaped muscles<br>In spaces between metacarpals                                                                                                                |                                                    |
| o<br><u>Muscle</u>     |                                                                                                               | 4 long, cone-shaped muscles<br>In spaces between metacarpals<br>Absent on metacarpal #3                                                                                     | Action                                             |
|                        | • <u>Palma</u><br>•<br>•<br>•                                                                                 | 4 long, cone-shaped muscles<br>In spaces between metacarpals<br>Absent on metacarpal #3<br><b>Ulnar Nerve</b>                                                               | <u>Action</u><br>Adductors (convergers) of Fingers |
| Muscle                 | • <u>Palma</u><br>•<br>•<br>•                                                                                 | 4 long, cone-shaped muscles<br>In spaces between metacarpals<br>Absent on metacarpal #3<br>Ulnar Nerve<br><u>Origins/Insertions</u><br>Idle-Finger-Side" of each metacarpal |                                                    |
| <u>Muscle</u><br>Thumb | • <u>Palma</u><br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | 4 long, cone-shaped muscles<br>In spaces between metacarpals<br>Absent on metacarpal #3<br>Ulnar Nerve<br><u>Origins/Insertions</u><br>Idle-Finger-Side" of each metacarpal | Adductors (convergers) of Fingers                  |

**Deepest Palm Muscles** Between the Metacarpals

**Ulnar Nerve** 

Muscle

2 – Middle Finger

3 – Middle Finger

4 – Ring Finger

1 – Index Finger

Visible from Dorsal side of Hand.

**Origins/Insertions** 

O – Sides of Adjacent Metacarpals (2 MC's/Muscle)

(On sides opposite to midaxis of hand)

(Both sides of Finger #3 - Middle Finger)

I – Extensor Expansion of 1<sup>st</sup> Phalanx of Fingers #2-#4.

Palmar

interossei

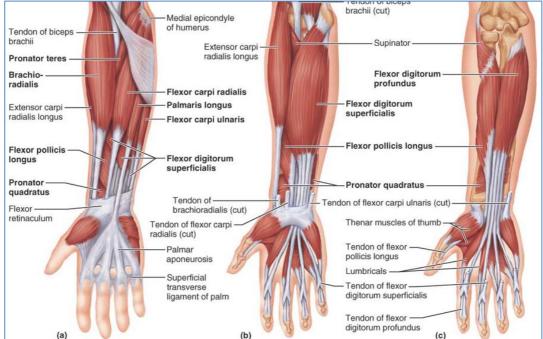
Action

Extends Fingers @ Interphalangeal Joint

Flexes Fingers @ MetacarpoPhalangeal

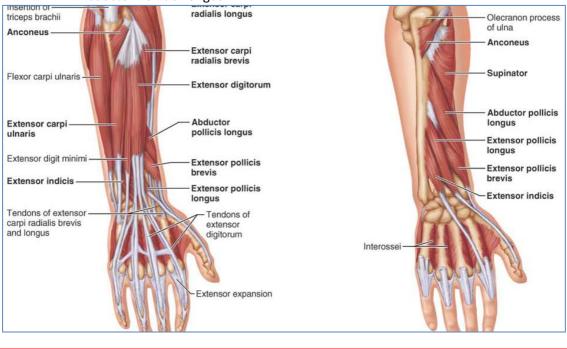
Dorsal

interossei


Abducts (diverges) Fingers

Joint.




#### • Extrinsic Muscles of the Hand:

- o Power Movements
- o Insert via Long Tendons from the Forearm
  - Anterior Tendons pass through Carpal Tunnel
- o Large Motor Units
- **o** Anterior Flexors/Posterior Extensors
- o Anterior Flexors:
  - Flexor Digitorum Superficialis
  - Flexor Digitorum Profundus
  - Flexor Pollicis Longus

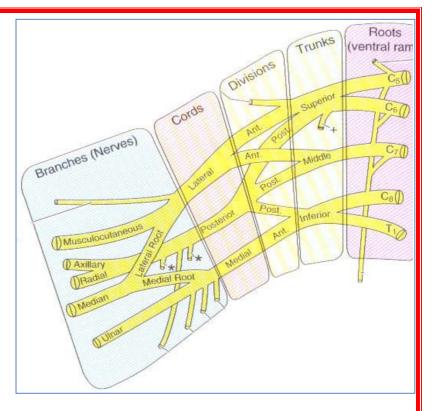


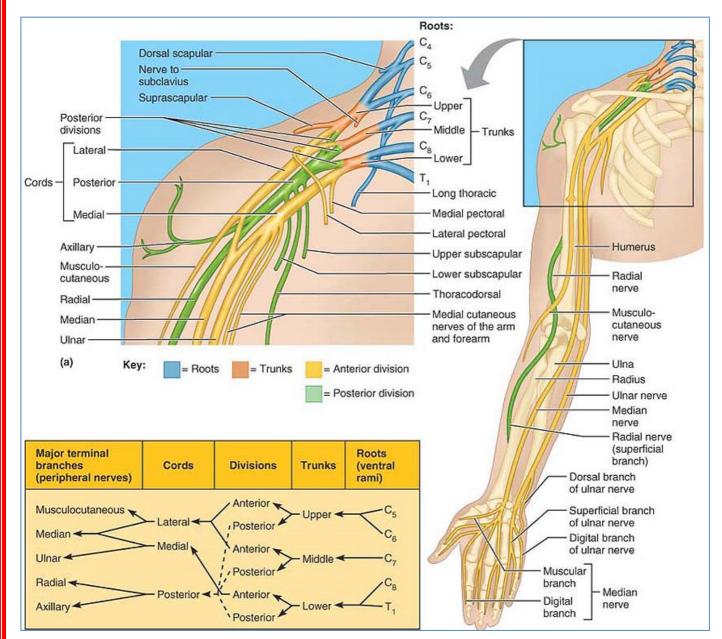
#### • Posterior Extensors:

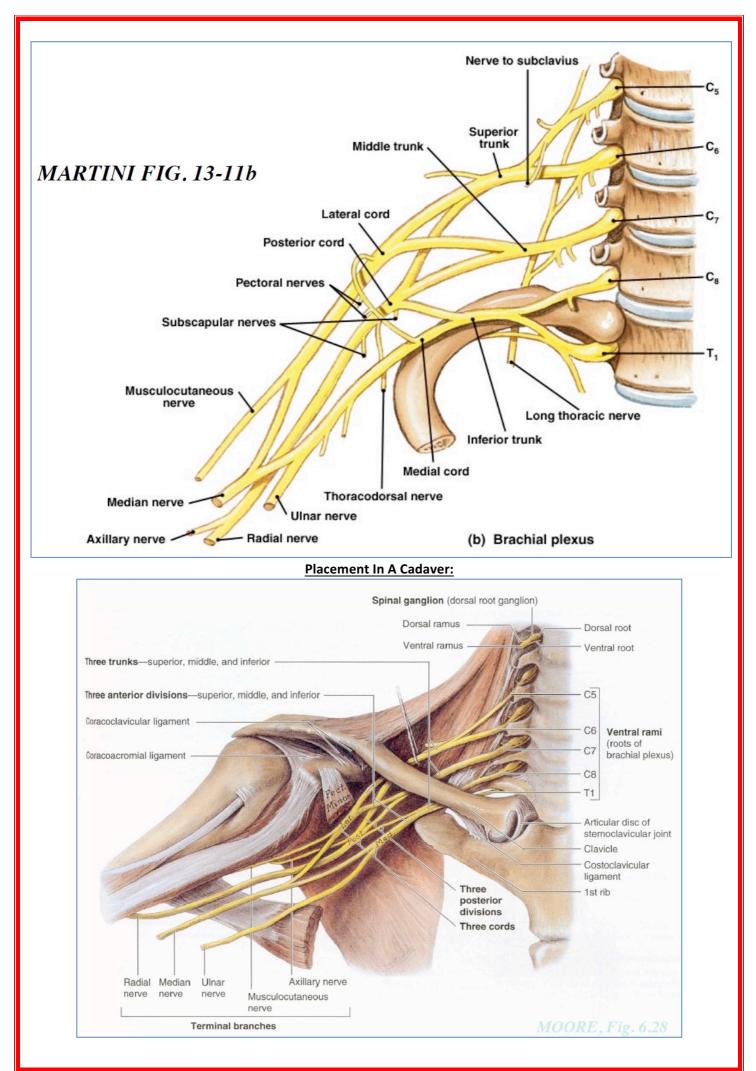
- Extensor Digitorum
- Extensor Digiti Minimi
- Extensor Indices
- Extensor Pollicis Longus
- Extensor Pollicis Brevis
- Abductor Pollicis Longus



# MUSCLE GALLERY TABLE 10.12

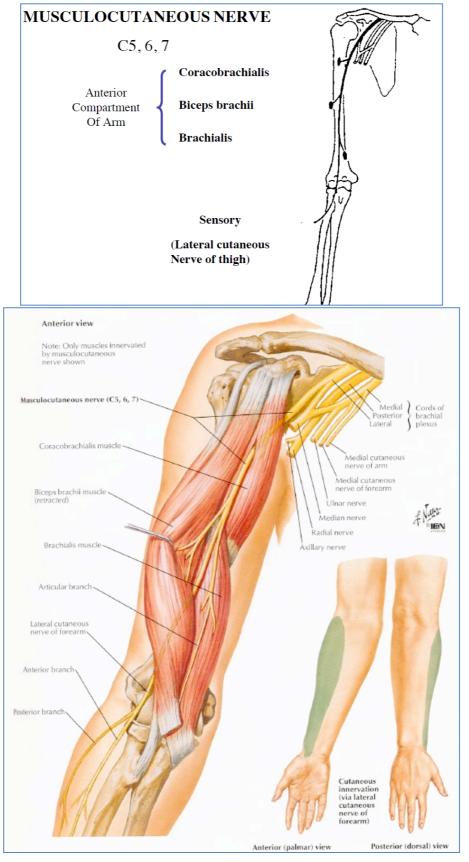

Summary of Actions of Muscles Acting on the Arm, Forearm, and Hand (Figure 10.17)


| Part I:                                                      | ACTIONS AT THE SHOULDER             |                              |                   |           |             |                     |             |                         |
|--------------------------------------------------------------|-------------------------------------|------------------------------|-------------------|-----------|-------------|---------------------|-------------|-------------------------|
| Muscles Acting on<br>the Arm (Humerus)<br>(PM = prime mover) | Flexion Extension                   |                              | tension           | Abduction | Adduction   | Medial<br>Rotation  |             | Lateral<br>Rotation     |
| Pectoralis                                                   | × (PM)                              |                              |                   |           | imes (PM)   | ×                   |             |                         |
| Latissimus dorsi                                             |                                     |                              | × (PM)            |           | × (PM)      | ×                   |             |                         |
| Deltoid                                                      | × (PM)<br>(anterior fibers)         | × (PM)<br>(posterior fibers) |                   | × (PM)    |             | ×<br>(anterior fibe | rs)         | ×<br>(posterior fibers) |
| Subscapularis                                                |                                     |                              |                   |           |             | imes (PM)           |             |                         |
| Supraspinatus                                                |                                     |                              |                   | ×         |             |                     |             |                         |
| Infraspinatus                                                |                                     |                              |                   |           | ×           |                     |             | imes (PM)               |
| Teres minor                                                  |                                     |                              |                   |           | imes (weak) |                     |             | imes (PM)               |
| Teres major                                                  |                                     |                              | ×                 |           | ×           | ×                   |             |                         |
| Coracobrachialis                                             | ×                                   |                              |                   |           | ×           |                     |             |                         |
| Biceps brachii                                               | ×                                   |                              |                   |           |             |                     |             |                         |
| Triceps brachii                                              |                                     |                              |                   |           | ×           |                     |             |                         |
| Part II:                                                     | ACTIONS                             |                              |                   |           |             |                     |             |                         |
| Muscles Acting<br>on the Forearm                             | Elbow Flexion                       |                              | n Elbow Extension |           | Pronation   |                     | Supination  |                         |
| Biceps brachii                                               | imes (PM)                           |                              |                   |           |             |                     |             | ×                       |
| Triceps brachii                                              |                                     |                              | ×                 | (PM)      |             |                     |             |                         |
| Anconeus                                                     |                                     |                              |                   | ×         |             |                     |             |                         |
| Brachialis                                                   | imes (PM)                           |                              |                   |           |             |                     |             |                         |
| Brachioradialis                                              | ×                                   |                              |                   |           |             |                     |             |                         |
| Pronator teres                                               | imes (weak)                         |                              |                   |           | ×           |                     |             |                         |
| Pronator quadratus                                           |                                     |                              |                   |           | × (F        | PM)                 |             |                         |
| Supinator                                                    |                                     |                              |                   |           |             |                     |             | ×                       |
| Part III:                                                    | ACTIONS ON THE WRIST ACTIONS ON THE |                              |                   |           |             |                     | THE FINGERS |                         |
| Muscles Acting on the Wrist and Fingers                      | Flexion                             |                              |                   | Abduction | Adduction   | n Flexion           |             | Extension               |
| Anterior Compartment                                         |                                     |                              |                   |           |             |                     |             |                         |
| Flexor carpi radialis                                        | × (PM)                              |                              |                   | ×         |             |                     |             |                         |
| Palmaris longus                                              | × (weak)                            |                              |                   |           |             |                     |             |                         |
| Flexor carpi ulnaris                                         | × (PM)                              |                              |                   |           | ×           |                     |             |                         |
| Flexor digitorum<br>superficialis                            | × (PM)                              |                              |                   |           |             | ×                   |             |                         |
| Flexor pollicis longus                                       |                                     |                              |                   |           |             | × (thur             | nb)         |                         |
| Flexor digitorum<br>profundus                                | ×                                   |                              |                   |           |             | ×                   |             |                         |
| Posterior Compartment                                        |                                     |                              |                   |           |             |                     |             |                         |
| Extensor carpi radialis<br>longus and brevis                 |                                     | >                            | ×                 | ×         |             |                     |             |                         |
| Extensor digitorum                                           |                                     | × (PM)                       |                   |           |             |                     |             | × (and abducts)         |
| Extensor carpi ulnaris                                       |                                     | >                            | <                 |           | ×           |                     |             |                         |
| Abductor pollicis longus                                     |                                     |                              |                   | ×         |             | (ał                 | oduct       | s thumb)                |
| Extensor pollicis longus<br>and brevis                       |                                     |                              |                   |           |             |                     |             | × (thumb)               |
| Extensor indicis                                             |                                     | >                            | ×                 |           |             |                     |             | × (index finger)        |


## Innervation (Peripheral):

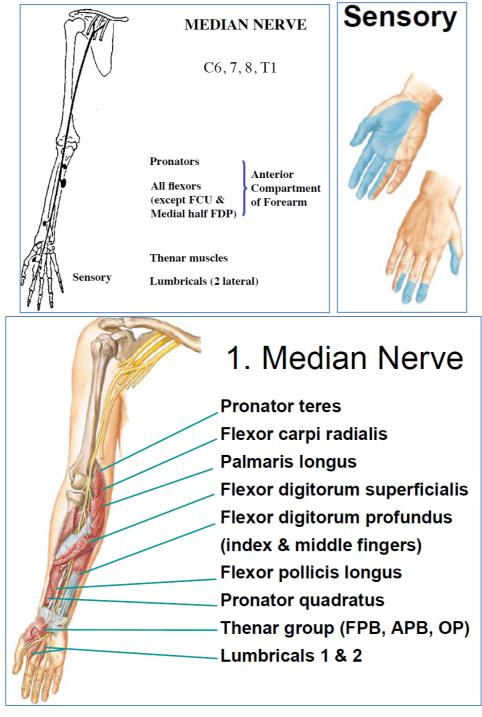
•

- <u>Axilla (</u>Brachial Plexus)
  - Roots (Ventral Rami)
    - C5, C6, C7, C8, T1
  - o **Trunks** 
    - Superior Trunk
    - Middle Trunk
    - Inferior Trunk
  - Divisions
    - Anterior
      - Posterior
  - $\circ \quad \text{Cords}$ 
    - Lateral Cord
    - Posterior Cord
    - Medial Cord
  - Terminal Branches (Nerves)
    - (Ant) Musculocutaneous
      - (Ant) Median
    - (Ant) Ulnar
    - (Post) Radial
    - (Post) Axillary



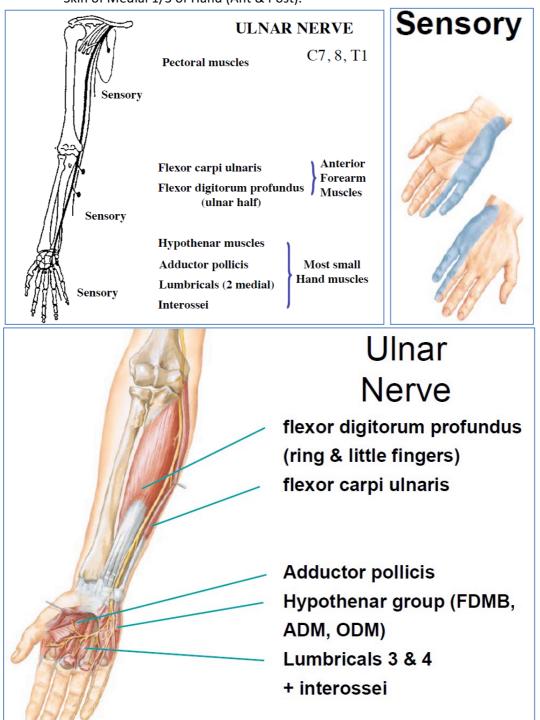






## • (Ant) Musculocutaneous

- o Branches off Lateral Cord
- o Runs down Anterior Arm
- o Innnervates:
  - Flexors of Arm:
    - Biceps Brachii
    - Brachialis
    - Coracobrachialis
  - Skin of Anterio-Lateral Forearm



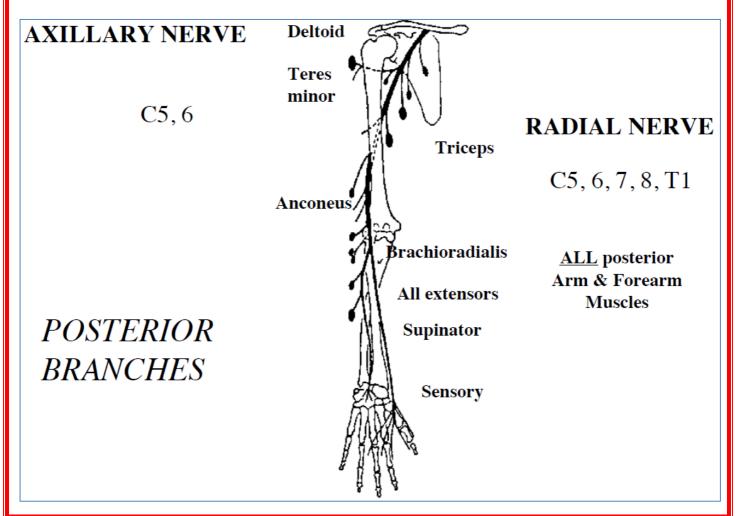

## (Ant) Median

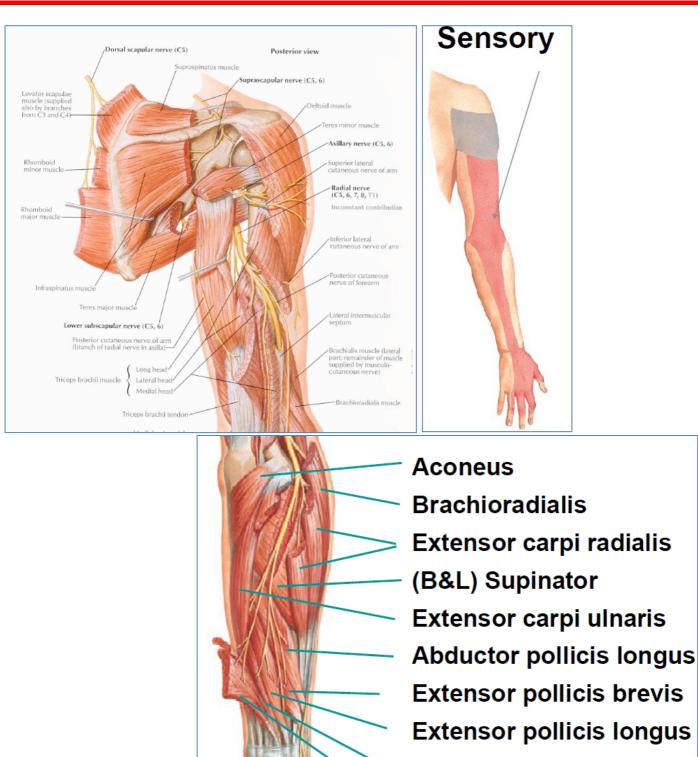
- o Branches off Medial & Lateral Cords
- o Runs down Anterior Arm & Forearm
- o Innervates:
  - Flexors of Anterior Forearm:
    - Palmaris Longus
    - Flexor Carpi Radialis
    - Flexor Digitorum Superficialis
    - Lateral ½ of Flexor Digitorum Profundus
    - Flexor Pollicis Longus
    - Pronator Teres
    - Pronator Quadratus
    - Thenar Muscles (Intrinsic muscles of Lateral Palm)
    - Lumbricals #1 & #2
    - Digital Branches to Fingers
  - Skin of Lateral 2/3 of Hand, Palm Side & Dorsum of Fingers 2 & 3



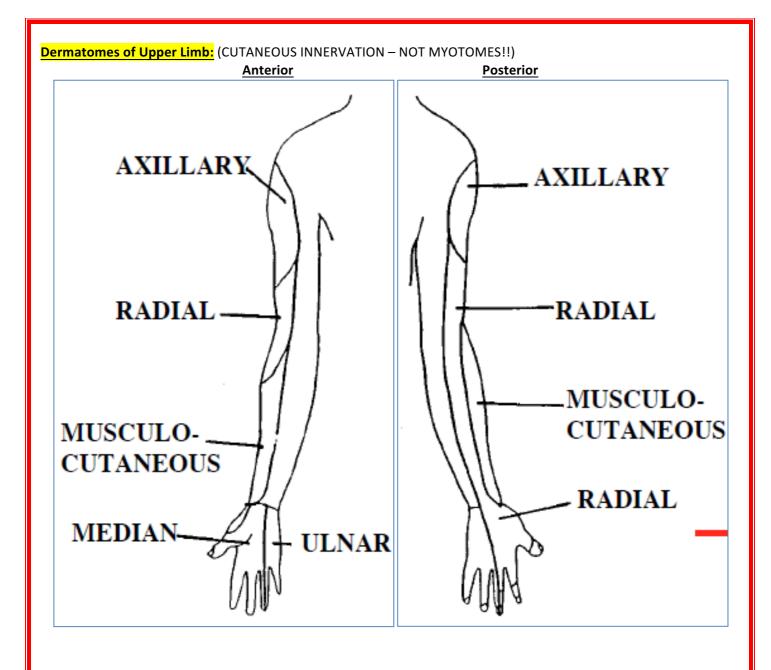
## • (Ant) Ulnar

- o Branches off Medial Cord
- Runs down Medial Arm→Behind Medial Epicondyle→Follows Ulna down Medial Forearm→Hand
- o Innervates:
  - Flexors of Anterior Forearm:
    - Flexor Carpi Ulnaris
    - Medial part of Flexor Digitorum Profundus
    - Majority of Intrinsic Muscles of Hand
      - o Adductor Pollicis
      - o Flexor Digiti Minimi Brevis
      - Abductor Digiti Minimi
      - o Opponens Digiti Minimi
      - Lumricals #3 & #4
      - o Interossei
  - Skin of Medial 1/3 of Hand (Ant & Post).





## (Post) Axillary

- o Branches off Posterior Cord
- o Runs Posterior to Neck of Humerus
- o Innervates:
  - Deltoid
  - Teres Minor
  - Skin & Joint Capsule of Shoulder


## (Post) Radial

- Branches of Posterior Cord
- Runs around Posterior Humerus (Radial-groove) → Anteriorly around Lateral Epicondyle → 2 Branches:
  - Superficial: Follows Lateral edge of Radius → Hand
  - Deep: Runs Posteriorly to Radius
- $\circ$   $\;$  ALL Posterior Upper-Arm & Forearm Muscles.
  - Extensor Muscles of Arm, Forearm & Hand:
    - Triceps Brachii
    - Anconeus
    - Supinator
    - Brachioradialis
    - Extensor Carpi Radialis Brevis
    - Extensor Carpi Radialis Longus
    - Extensor Carpi Ulnaris
    - Abductor Pollicis Longus
    - Extensor Pollicis Brevis
    - Extensor Pollicis Longus
    - Extensor indicis
    - Extensor Digitorum
    - Extensor Digiti Minimi
  - Skin of Entire Latero-Posterior Arm & Forearm & Hand (except dorsum of fingers 2 & 3)





- **Extensor indicis**
- Extensor digitorum &
  - extensor
  - digiti minimi



## Nerve Lesions:

•

•

## Afferent: Sensory Loss

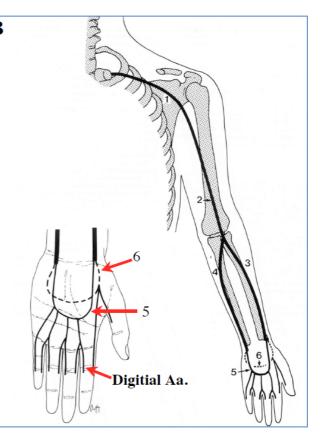
- o Sensory impulses don't reach spinal cord
- $\circ$   $\;$  Loss of cutaneous sensation
- Loss of spinal reflexes
- Weird sensations tingling, itching, pain, etc.
- Efferent: Paralysis
  - If impulse can't reach muscle.
  - Muscle becomes flaccid no tone.
  - Complete/Incomplete
  - Loss of spinal reflexes

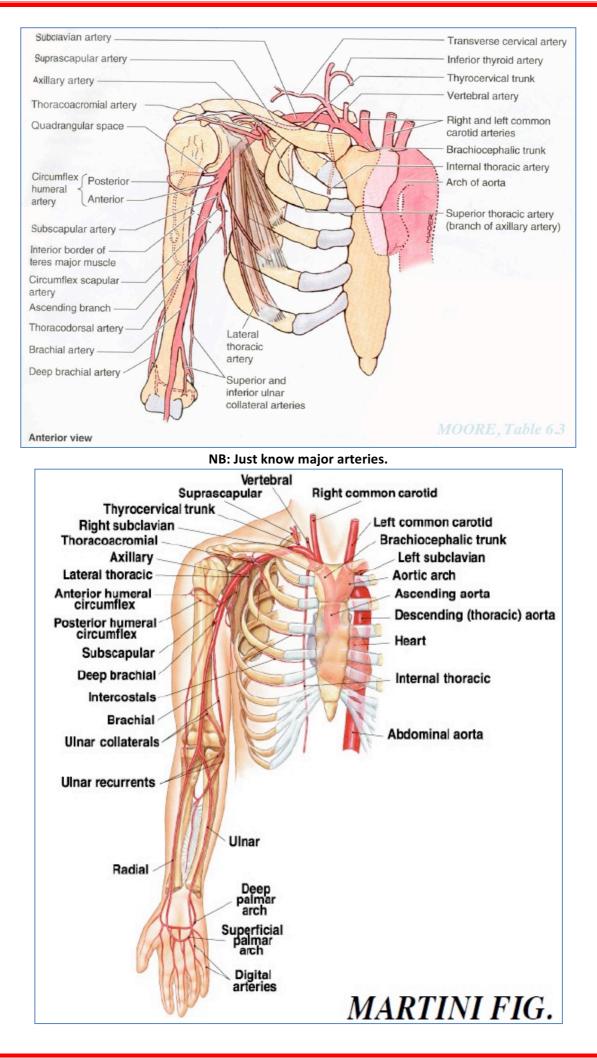
| NERVE            | SITE<br>OF<br>INJURY | PARALYSIS MOTOR<br>LOSS                                                                |                                                                                               | SENSORY<br>LOSS                  |
|------------------|----------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|
| Axillary         | cillary axilla       |                                                                                        | humeral<br>abduction                                                                          | over lower<br>deltoid            |
| Musculocutaneous | axilla               | arm flexors                                                                            | weak forearm<br>flex. &<br>supination                                                         | lateral<br>forearm               |
| Radial           | axilla<br>cubital    | supinator &<br>extensors<br>all except                                                 | weak<br>supination,<br>loss of<br>extension<br>as above                                       | lat. dorsum<br>of hand           |
|                  | fossa                | triceps                                                                                | except triceps                                                                                |                                  |
| Median           | elbow                | pronators,<br>flexors exc.<br>FCU/med.<br>FDP, thenar,<br>lat 2<br>lumbricals          | loss/impaired<br>flexion of wrist<br>& digits<br>loss of<br>opposition<br>& precision<br>grip | lat. 3 1/2<br>digits             |
|                  | wrist                | thenar mm. &<br>lat 2<br>lumbricals                                                    | loss opposition<br>& precision<br>grip                                                        | Lat. 3 1/2<br>digits             |
| Ulnar            | above<br>elbow       | FCU, med.<br>FDP,<br>hypothenar,<br>add. poll.,<br>med. 2<br>lumbricals,<br>interossei | impaired hand<br>function;<br>"claw hand" -<br>loss of power<br>grip                          | palm &<br>dorsal 1 1/2<br>digits |
|                  | at wrist             | as above,<br>except FDP                                                                | unimpaired<br>flexion of digits<br>4, 5 at IP joints                                          |                                  |

## Arterial Blood Supply:

•

- NB: Arterial Anastomoses:
  - Collateral Circulation
  - o Back streets (alternate pathways) in case the main artery is blocked
  - In areas subject to compression
  - o Around joints


## • Thoracic Origins


- BrachioCephalic Trunk  $\rightarrow$
- Right / Left SubClavian Arteries →
- Axillary Artery
- <u>Axilla</u>
  - $\circ$  Axillary Artery  $\rightarrow$
  - o Brachial Artery
- Upper Arm
  - Brachial Artery  $\rightarrow$
  - Radial & Ulnar Artery (at cubital fossa)
- <u>Forearm</u>
  - $\circ$  <br/> Radial Artery & Ulnar Artery  $\rightarrow$
  - o Superficial & Deep Palmar Arches
- Hand
  - Superficial Palmar Arch →
  - o Digital Arteries
  - Deep Palmar Arches →
  - o Metacarpal Arteries
  - o NB: Digital & Metacarpal Arteries Anastomose with each other

# **ARTERIES OF UPPER LIMB**

## - Summary

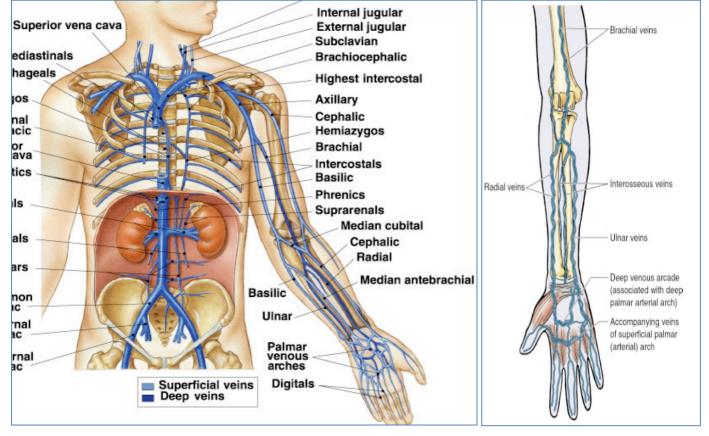
- 1. Axillary
- 2. Brachial
- 3. Radial
- 4. Ulnar
- 5. Superficial palmar arch
- 6. Deep palmar arch





#### Venous Blood Drainage:

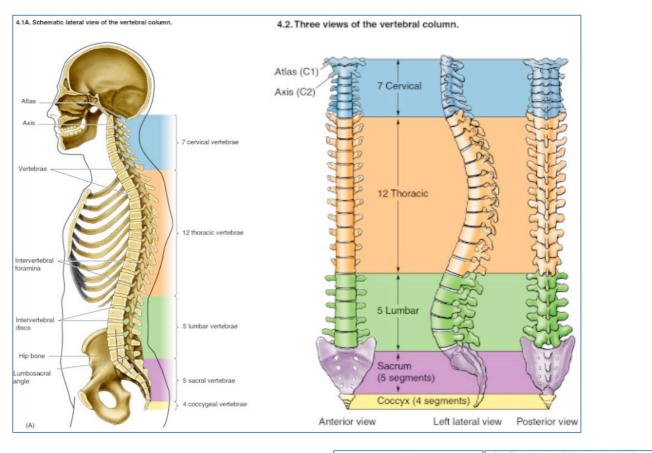
- Deep & Superficial
- Flow: Superficial → Deep → Heart
- Valves one way flow
- Varies from person-person
- Deep Veins run in pairs clinging to Arteries.


- Summary
- 1. Dorsal venous arch
- 2. Cephalic vein
- 3. Basilic vein
- 4. Median cubital
- 5. Median antebrachial
- Median cephalic
   & median basilic



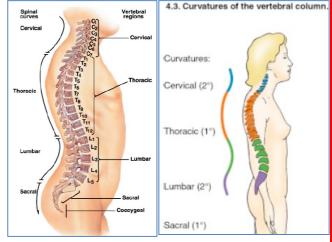
- Superficial:
  - Superficial Dorsal & Palmar Venous Arches  $\rightarrow$ 
    - Cephalic Vein
    - Basilic Vein
    - Median AnteBrachial
- o Deep:
  - Deep Palmar Arches →
    - Radial Veins
    - Ulnar Veins
    - Interosseous Veins

- → Median Cubital → Cephalic & Basilic Veins → Axillary Vein
- $\rightarrow$  Median Cubital $\rightarrow$  Cephalic & Basilic Veins  $\rightarrow$  Axillary Vein
- → Median Cubital →Cephalic & Basilic Veins →Axillary Vein
- → Brachial Veins → Axillary Vein → Brachial Veins → Axillary Vein
- →Brachial Veins→Axillary Vein


- <u>Axilla:</u>
  - Axillary Vein  $\rightarrow$
  - o Subclavian Vein
- Thoracic:
  - Subclavian Vein→
  - $\circ$  BrachioCephalic  $\rightarrow$
  - $\circ$  Superior Vena Cava  $\rightarrow$
  - o Heart

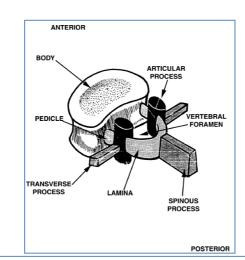


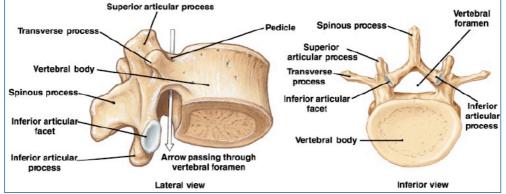
## The Back: Bones & Muscles


#### Bones:

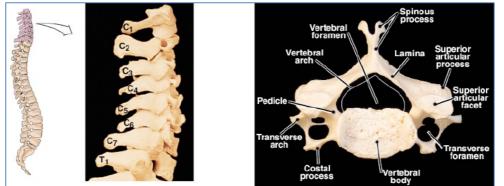
- Vertebral Column:
  - General Info:
    - 33 Vertebrae
    - 5 Regions:
      - 7x Cervical
      - 12x Thoracic
      - 5x Lumbar
      - 5x Sacral (fused by adulthood)
      - 4x Coccygeal
    - Bones increase in size towards the bottom. (due to increased load/weight)
    - Supports Skull & Trunk
    - Protects Spinal Chord
    - Fibrocartilaginous Intervertebral Discs
    - Shock Absorption during Movement



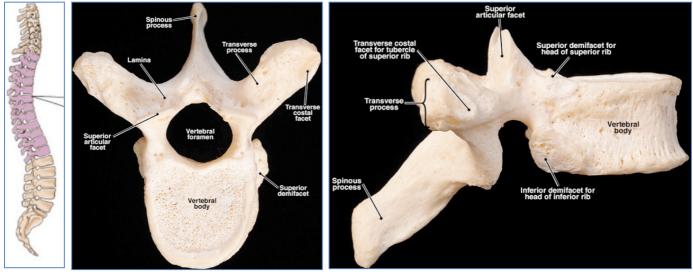

#### o <u>Curvatures:</u>


- 2x Primary: (Concave Anteriorly)
  - Ie. Thoracic
  - & Sacral
- 2x Secondary (Concave Posteriorly)
  - le. Cervical
  - & Lumbar
- Abnormalities:
  - **Kyphosis:** Excess 1<sup>0</sup> curvature
  - Lordosis: Excess 2<sup>0</sup> curvature
  - Scoliosis: Lateral Deviation

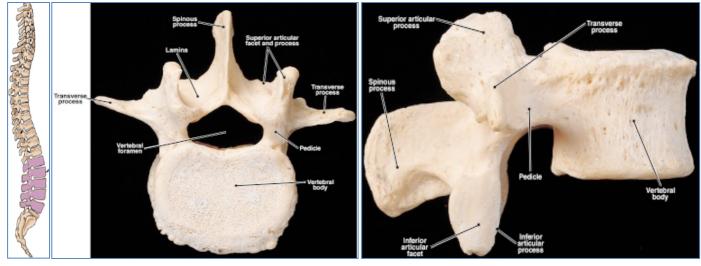



## • **Typical Vertebrae:**

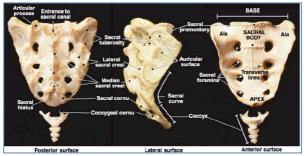
- Body
- Vertebral Arch
  - o Lamina
  - o Pedicle
- Vertebral Foramen (canal)
- Transverse Processes
- Spinous Processes
- Articular Processes
  - o Superior
  - $\circ$  Inferior
- Vertebral Notches
- Intervertebral Foramen (passage of the spinal nerve root between vertebrae)





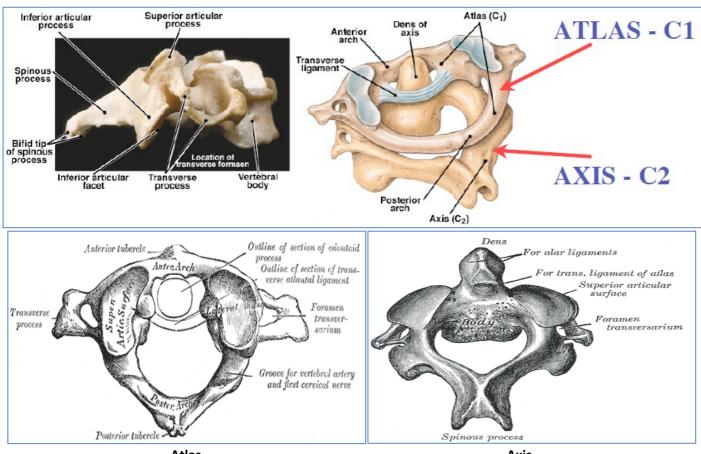


- 7x Cervical: Distinguishing Features:
  - Small Body
  - Very Large Vertebral Foramen
  - Transverse Foramena: Holes in Transverse Processes  $\rightarrow$  passage of vertebral arteries
  - Dual Spinous Processes




- **12x Thoracic:** Distinguishing Features:
  - Medium Sized Body
  - Thick Lamina
  - Single Spinous Process
  - Costal Facet on Transverse Processes & Body for Ribs



- **5x Lumbar:** Distinguishing Features:
  - Very Large Body
  - Smaller Vertebral Foramen
  - No Costal Facets
  - Chode-like Spinous Processes



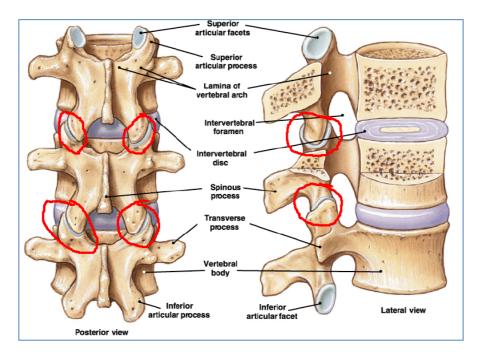

- **5x Sacrum:** Distinguishing Features:
  - Obvious
  - Don't bother with landmarks of this
- **4x Coccyx:** Distinguishing Features:
  - Obvious
  - Don't bother with landmarks of this



www.regentstudies.com

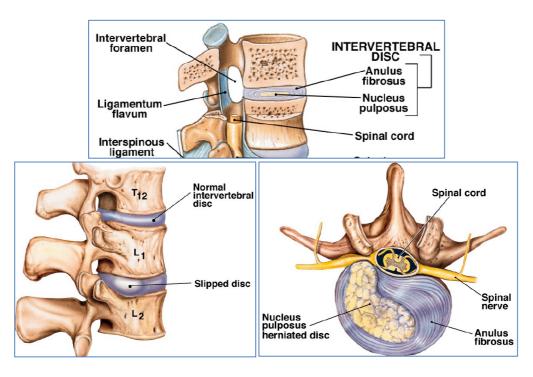
- Special "Atypical" Vertebrae:
  - C1 Atlas:
    - No Body
    - Just a ring of bone
      - o Anterior Arch
      - Posterior Arch
    - Transverse Foramena: Holes in Transverse Processes  $\rightarrow$  passage of vertebral arteries
    - Transverse Ligament for Dons of Axis
    - Skull Sits on top of this bone
  - C2 Axis:
    - Small body with a protuberance: The "Dens of Axis"
      - Wide Lamina & Vertebral Foramen
    - Transverse Foramena: Holes in Transverse Processes  $\rightarrow$  passage of vertebral arteries






Axis

- o <u>Joints:</u>
  - Atlanto-Occipital Joint:
    - Synovial Egg & Spoon Joint
    - Between the Skull & The Atlas
    - Allows you to nod (the 'yes' joint)
  - Atlanto-Axial Joint:
    - 2 Parts:
      - Synovial Pivot
        - Dens of Axis & Transverse Ligament of Atlas
      - o Synovial Planar -
        - Superior Articular Surface of Axis & Inferior Articular Surface of Atlas.
    - Allows the head to turn (the 'no' joint)


## Zygopophyseal (Facet) Joints:

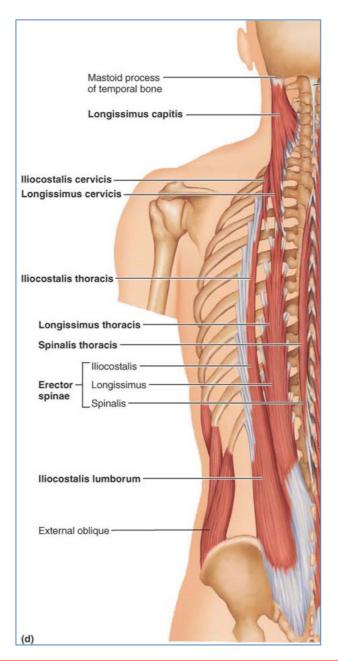
- Synovial Planar Joints
- Between the Superior & Inferior Articular Processes of 2 Vertebrae



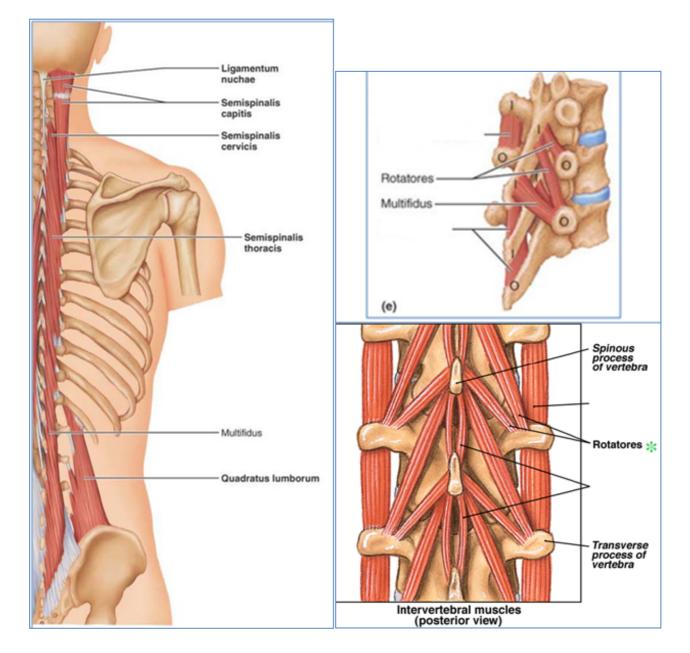
#### Intervertebral Discs:

- Cartilaginous Joints (Symphyses)
- Allows slight movement between vertebrae
- 2 Parts Similar to a Jam Doughnut:
  - Anulus Fibrosis
    - Concentrc rings of collagenous Fibrocartilage
    - Distributes pressure evenly across the disc
    - o Nucleus Pulposus
      - Loose fibers suspended in a Mucoprotein Jelly.
      - Acts as a shock absorber
      - Keeps the two vertebrae separated.
- Nucleus can herniate out  $\rightarrow$  'Slipped Disc'
  - If the herniation puts pressure on a spinal nerve → pain.

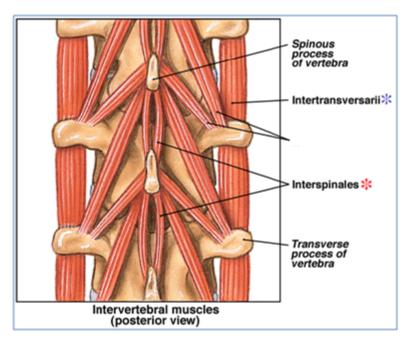



## **Back Muscles:**

•

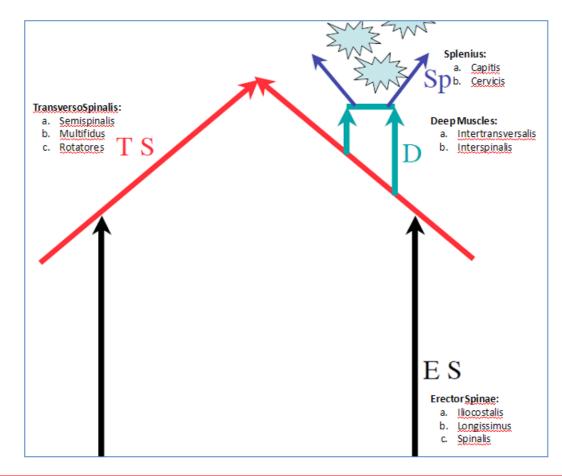

- Superficial:
  - Muscles of the shoulder girdle
- Intermediate:

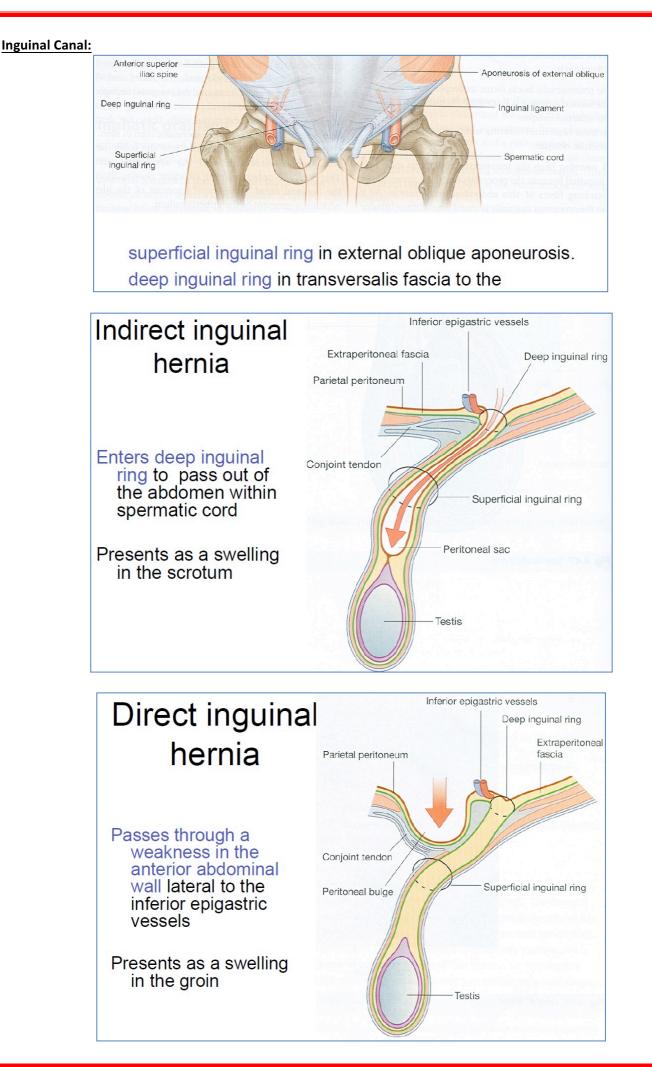
\*Deep:


- Respiratory Muscles
  - (All innervated by Posterior Spinal Nerves)
- o Erector Spinae: Most Superficial Group
  - (I Love Sex)
    - Iliocostalis: (Lumborum/Thoracis/Cervicis)
      - Lateral-most
      - O Iliac Crest
      - I Lumbar & Thoracic Ribs + Transverse Processes of Cervical Vertebrae
    - Longissimus: (Thoracis/Cervicis/Capitus)
      - Between Iliocostalis & Spinalis
      - O Transverse Processes of Lumbar, Thoracic & Cervical Vertebrae
      - I Ribs Superior to Origin, Or, Transverse Processes of Thoracic or Cervical Vertebrae
    - Spinalis: (Thoracis/Cervicis/Capius)
      - Medial-most
      - O Spines of Upper-Lumbar & Lower-Lumbar Vertebrae
      - I Spinous Processes of Upper Thoracic & Cervical Vertebrae



- o **TransversoSpinalis:** Intermediate Group
  - (Sex Me Right)
    - Semispinalis
      - O Transverse Processes of Thoracic Vertebrae
      - I Occipital bone & Spinous Processes of Thoracic & Cervical Vertebrae.
    - Multifidus
      - A series of pairs of small muscles extending the full length of the spine
      - Just Superficial to Rotatores
      - Each spans 2 or 3 intervertebral spaces before inserting
      - O Posterior Sacrum/Iliac Crest/Transverse Processes of Lumbar or Thoracic Vert. /Articular Processes of Cervical Vertebrae.
      - I Spinous Processes of All Vertebrae (except Atlas)
    - Rotatores
      - Beneath Multifidus
      - In Thoracic Region Only
      - O Transverse Processes of Thoracic Vertebrae
      - I Spinous Processes of The 2 Above Vertebrae.





- <u>Deep Group: Deepest Group</u> (I Tried Indoor Sex)
  - InterTransversalis
  - InterSpinales



## Splenius:

- Splenius Capitis:
  - O Spinous Processes of Upper 4 Thoracic Vertebrae & 7<sup>th</sup> Cervical Vertebra
  - I Mastoid Process & Occipital Bone
- Splenius Cervicis:
  - $\circ$  O Spinous Processes of  $3^{rd} 6^{th}$  Thoracic Vertebrae
  - o I Transverse Processes of Upper 3 Cervical Vertebrae





### MUSCULOSKELETAL Pathology: BONY INJURIES

Key words + Definitions:

- Fracture:
  - Compound fracture:
    - **nd fracture:** An *Open* Fracture where there is broken skin.

A Break in a Bone

- **Dislocation (or "Luxation"):** The Displacement of Joint Surfaces with Abnormal Articulation.
- **Reduction:** Restoration of a fracture or dislocation to the correct alignment.
- Splint:
- Medical device for immobilizing limbs/spine to prevent further injury
- **Neurovascular compromise:** Vessels /Nerves Damage due to injury  $\rightarrow$  functional impairments.
- **Compartment syndrome:** Bleeding/Swelling into a muscle compartment → Compress vessels/nerves.

## What is a Musculoskeletal Emergency and why?

- Fractures:
  - Breaks in Bone.
  - Emergency Because:
    - If it's an 'Open Fracture' Risk of Infection
    - Some fractures won't heal without treatment
    - Neurovascular compromise can pull/tear/compress/rupture surrounding nerves/vessels.
- Dislocations:
  - $\circ$  The Displacement of Joint Surfaces such that Normal Articulation no longer occurs.
  - When forces on joint are greater than stabilizing forces of Bone, Ligament & Muscle.
  - Emergency Because:
    - The longer the delay before reduction, the more difficult it becomes, as the muscles around the joint contract.
    - Delay can also result in significant joint & ligament damage → Impairment of function.
    - Neurovascular compromise can pull/tear/compress/rupture surrounding nerves/vessels.
- Dismemberment:
  - Loss of limb or Extreme Tissue-loss resulting in permanent functional impairment of that limb.

## Factors Affecting the Degree of Urgency:

- Abnormal ABC
- Bleeding
- Major Vascular Compromise
- Open Vs. Closed Injury
- Neurological Compromise
- Pain
- Potential Loss of Function if Injury is Untreated.

## The Basic Priorities of MSK Care:

- Primary Survey "ABC" (Life before limb)
- Identify Injury
- Analgesia
- Splint
- Prevent Infection
- Reduction (Restoring Alignment)

## **Benefits of Reduction & Splinting:**

- Splinting:
  - o Reduces Pain
  - Reduce Bleeding
  - Promote Healing
  - o Reduce risk of Further Compromise (Bone/Neuro/Vascular/Functional)
- Reduction:
  - Reduce Pain
  - Restore Function
  - Reduce risk of Further Compromise (Neuro/Vascular/Functional)

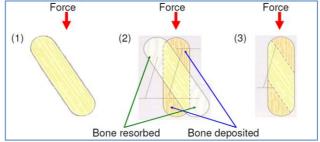
#### FRACTURES & FRACTURE HEALING:

#### - <u>Aetiology:</u>

- \*Traumatic Injury
- Pathological Fracture (Osteolytic Bone Metastasis, or Osteoporosis)

## - Mechanisms of Fracture Healing:

- o Fracture
- o 1. (1-3days) Haematoma & Inflammation (Blood Clot + Fibrin Mesh)
- 2. (1-3weeks) Soft Callus (Deposition of Osteoid + Granulation Tissue + Fibroblasts)
- **3.** (1-2mths) Hard Callus (Mineralisation of Osteoid) NB: VISIBLE ON XRAY
- 4. (>2mths) Remodelling of Woven Bone with Lamellar Bone

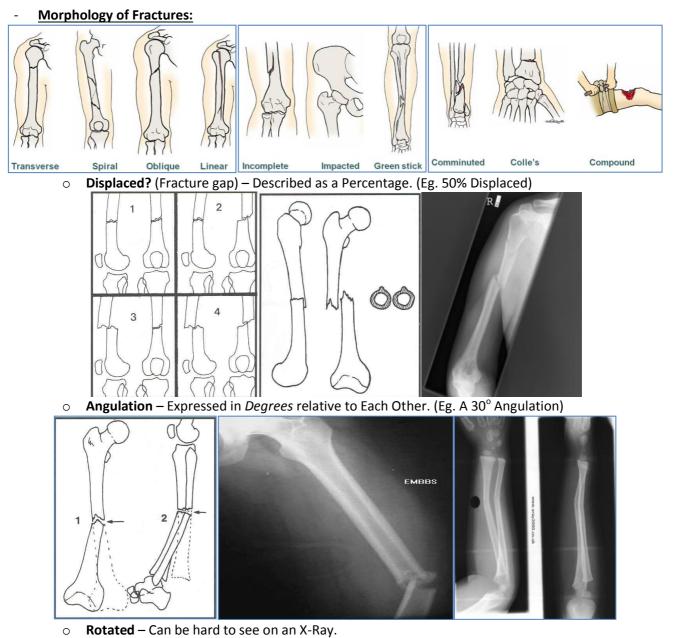

Bone healing - Callus

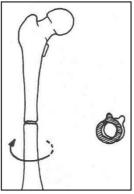


#### Bone Remodelling:

• Bone remodels in response to:

- Calcium requirements in body...and
- Mechanical Stress
- Physical Activity (Stress)
- Nutrition
- Vitamin D
- Age
- Hormones (Eg. PTH, PHRP)
- o Resorption destruction of old bone matter by Osteoclasts
- o Apposition deposition of new bone matter by Osteoblasts





#### - Clinical Features:

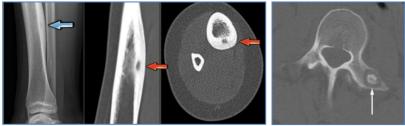
- Emergency Because:
  - Risk of Infection If an 'Compound/Open Fracture'.
  - Some *require* treatment to heal.
  - Risk of NV-Compromise can pull/tear/compress/rupture surrounding nerves/vessels.
  - Risk of Compartment Syndrome Bleeding into muscle compartments → Compresses blood vessels and nerves → (May lead to "Crush Syndrome")
  - NB: Crush Syndrome: Muscle Ischaemia/Necrosis due to Compartment Syndrome → Pain, Swelling, Inflammation, DIC, Rhabdomyolysis → Limb Amputation.

#### - <u>Treatment:</u>

- Reduction (Either Open or Closed Reduction)
- Immobilisation (Splint/Cast/Rod/Pins/Brace/etc)
- o Analgesia
- o <mark>Rest</mark> → Physio






#### MUSCULOSKELETAL Pathology: BONY TUMOURS

#### Benign Tumours:

## - OSTEOID OSTEOMA:

0

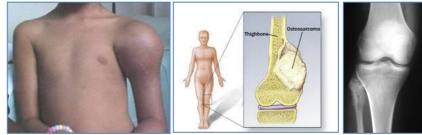
- <u>Aetiology:</u>
  - Benign Tumour of the Osteoblasts
- <u>Pathogenesis:</u>
  - Mild Dysplasia of Osteoblasts
  - Clinical Features:
    - Young Adults
    - Symptoms:
      - \*Severe, Intermittent Pain @ Night.
      - \*Dull, Persistent Pain during the Day
      - Limping & Muscle Atrophy
      - Location Typically Diaphysis of Tibia or Femur.
- o Diagnosis:
  - XR & CT Small (<1.5cm), Round Radiolucent nodule Surrounded by Dense Bone.
- o <u>Treatment:</u>
  - Pain Characteristically Relieved by Aspirin.
  - May be surgically removed, or left to resolve.
- <u>Prognosis:</u>
  - Benign Will Resolve Spontaneously in ~3yrs if untreated.



#### SIMPLE BONE CYSTS:

0

#### • <u>Aetiology:</u>


- Unknown (Can occur in ↑PTH → ↑Osteoclastic → Cyst Formation)
- Pathogenesis:
  - Benign Cyst Formation within a bone filled with Straw-Coloured Fluid.
  - Clinical Features:
    - Benign
    - Asymptomatic
    - May → Pain, Swelling
    - May → Path Fracture through the Cyst.
- o <u>Diagnosis:</u>
  - Xray (Hollow cavity in Metaphysis)
- o <u>Treatment:</u>
  - Curettage +/- Bone Graft if in a Structurally-Compromising Location.
- Prognosis:
  - Benign



## Malignant Tumours:

- OSTEOSARCOMA:
  - <u>Aetiology:</u>
    - Malignant Tumour of the Osteoblasts
  - <u>Pathogenesis:</u>
    - Malignant Dysplasia of Osteoblasts → Bone Forming
  - o <u>Morphology:</u>
    - Metaphysial "Chicken-Drumstick Appearance"
    - Raised/lifting Periosteum  $\rightarrow$  "Codman's Triangle"  $\rightarrow$  Triangular reactive bone formation
    - Infiltration into the marrow
  - o <u>Clinical Features:</u>

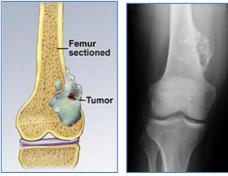
- Epi: YOUNG (Children & Adolescents)
- Location: Typcially Knee & Shoulder (Metaphysis of Long Bones)
- Symptoms:
  - Fever!
  - Weight Loss
  - Chronic Localised Bone Pain & Tenderness
    - NB: Does NOT involve Joints
  - Inflammation, Redness
- Complications:
  - Pathological Bone Fracture (Mild/No Trauma)
  - Non-Healing Fractures
- o Diagnosis:
  - DON'T Biopsy
  - X-Ray, & Bone-Scan
- <u>Treatment:</u>
  - Surgery + Chemotherapy
- Prognosis:
  - Reasonable Prognosis Highly Chemosensitive = <50% Curable</p>



#### - EWING'S SARCOMA:

- <u>Aetiology:</u>
  - Genetic
- <u>Pathogenesis:</u>
  - Malignant Round-Cell Tumour
- <u>Clinical Features:</u>
  - Teenagers
  - Long Bones (Arms & Legs)
  - Symptoms:
    - Localised Pain & Swelling
    - Pathological Fracture
- o <u>Diagnosis:</u>
  - Fever, Anaemia, Leukocytosis & ESR
  - XRay (Moth-Eaten Appearance with Periosteal "Onion-Skinning").
- <u>Treatment:</u>
   <u>Sure</u>

## Surgery + Chemotherapy + Radiotherapy


- Prognosis:
  - Metastases Frequent
  - Poor Prognosis (80% Local; 25% Metastatic)



## - CHONDROSARCOMA:

- Aetiology:
  - Primary = Unknown
  - Secondary = to Osteochondroma
- Pathogenesis:
  - Malignant Tumour of Cartilage
- o **<u>Clinical Features</u>**

- Adults (>40)
  - Symptoms:
    - Asymptomatic
    - Pathological Fracture
- o Diagnosis:
  - X-Ray: Large Exostosis + Calcification in the Cap
- o <u>Treatment:</u>
  - Aggressive Surgical Resection (NOT Responsive to Chemotherapy)
- Prognosis:
  - 25-90% 5yr Survival Depending on Grade.



## - GIANT CELL TUMOUR OF THE BONE:

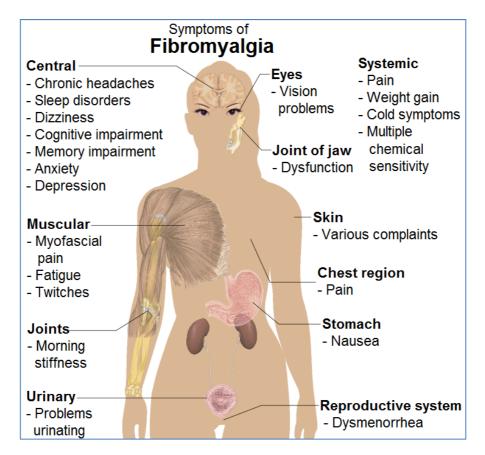
- <u>Aetiology:</u>
  - Unknown
- Pathogenesis:
  - Osteoclast-Monocyte Tumours
- o <u>Clinical Features:</u>
  - Local Pain & Swelling
  - Limited ROM if Joint Involvement
  - Pathological Fractures
- o <u>Treatment:</u>
  - Surgery +/- Radiotherapy
  - Bisphosphonates may help.
- Prognosis:
  - 66% Malignant



#### MUSCULOSKELETAL Pathology: CRYSTAL ARTHROPATHIES

## **GOUT (GOUTY ARTHRITIS):**

- <u>Aetiology:</u>
  - $\circ$  Anything that causes  $\uparrow$ Urea Production or  $\downarrow$ Urea Excretion
    - Eg. High Protein/Alcohol Diet
  - (NB: Also Secondary Causes Eg. Renal Failure, Thiazides, Hypothyroidism, Haemolysis, Obesity)
- Pathogenesis:
  - Derangement in Purine Metabolism  $\rightarrow$  Hyperuricaemia  $\rightarrow$  *Monosodium Urate* Crystal Deposition in Joint tissue  $\rightarrow$  Forms "*Tophi*"  $\rightarrow$  Chronic Inflammation  $\rightarrow$  Destruction of the tissue
- Morphology:
  - Macro: Red, Hot, Swollen Joints (Typically 1<sup>st</sup> MTP Joint & Hands) + Gouty Tophi
  - **Clinical Features:** 
    - Typically Males >45yrs
    - **o** Recurrent Severely Painful Episodes of Acute Arthritis:
      - Typically Lower Extremities First (1<sup>st</sup> MTP Joint)
      - Can also affect Hands
      - - May mimic Cellulitis (But will have ↓ ROM, Cf. Cellulitis has normal ROM)
      - Attacks last 1wk.
    - o Gouty "Tophi" (Urate deposits in Joints, Cartilage, Tendons, Bursae & Soft Tissues)
      - Common Sites: 1<sup>st</sup> MTP joint, Tendon Insertions, Pressure Points
      - Painless, but ↓ ROM
    - Effects on Kidney:
      - Uric Acid Stones
      - Urate Nephropathy
- Diagnosis:
  - o Clinical Diagnosis
  - o Joint Aspirate & Microscopy (Needle-Shaped Monosodium-Urate Crystals)
- <u>Treatment:</u>
  - <u>Colchicine</u> (For Acute Relief)
  - o <u>Allopurinol</u> (Preventative Only; Can Worsen an Acute Attack)
  - o <mark>NSAIDs</mark>
  - o **Corticosteroids**
  - Lifestyle Change (Avoid High-Purine Foods (Meats, Fish, Beans, Peas, Beer))


#### PSEUDOGOUT ("Chondrocalcinosis"):

- Actually more common than "True" Gout
- <u>Aetiology:</u>
  - **Calcium** [Eg. Hyperparathyroidism, Hypomagnesemia], Diabetes, Haemochromatosis, Elderly.
  - NB: Recurrence may be Triggered by Dehydration, Acute Illness, Surgery or Trauma.
- Pathogenesis:
  - **Calcium Pyrophosphate** deposition in Joints  $\rightarrow$  Calcification & Inflammation  $\rightarrow$  Pain = Arthritis.
- Morphology:
  - o Red, Tender, Swollen Joints which may mimic Gouty Arthritis.
- Clinical Features:
  - o Polyarticular Arthritis (Severely Painful)
  - o Knees, Wrists, Hips & Feet are Most Common
  - Duration Self-Limiting Up to 3 Wks
- Diagnosis:
  - XRay ("Chondrocalcinosis" Radiographic Calcification in Cartilage)
  - **\*\*Joint Aspirate** (*Calcium Crystals in Joints*; + RULE OUT Septic Arthritis & True Gout).
- <u>Treatment:</u>
  - Joint Aspiration & Rest
  - o <mark>NSAIDS</mark>
  - Intra-Articular Steroids to  $\bigvee$  Inflammation.
- Prognosis:
  - $\circ$  50% of Pseudogout  $\rightarrow$  Degenerative Joint Changes (Osteoarthritis)

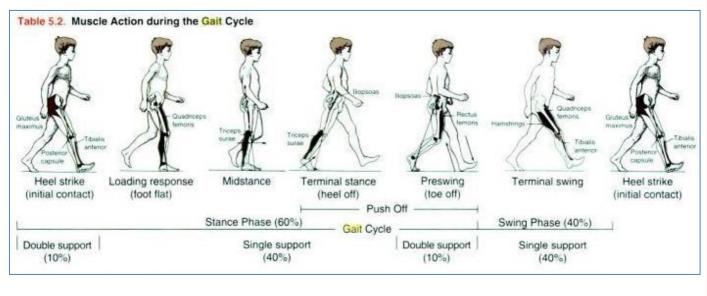
## MUSCULOSKELETAL Pathology: FIBROMYALGIA

#### FIBROMYALGIA:

- <u>Aetiology:</u>
  - $\circ$  Psychosomatic
  - o Associated with Chronic Fatigue Syndrome & Psychiatric Illness (Depression & Anxiety)
  - Associated with IBS, Migranes, Obesity,.
- Pathogenesis:
  - o None
- Morphology:
  - o Joint Examination is Normal
  - No Pathology
- Clinical Features:
  - Middle Aged Women (3F:1M, 25-45)
  - Widespread Aching, Stiffness & Reproducible Tender Points.
  - Chronic Fatigue
  - o Symptoms Aggravated by Physical Activity, Poor Sleep & Stress.
  - Neurology Hyperalgesia & Paraesthesias.
- Diagnosis:
  - >3mth History of Widespread Pain
  - Diagnosis of Exclusion (Lab Ix Normal)
- Treatment:
  - Stress Reduction
  - o Tricyclic Antidepressants



## MUSCULOSKELETAL Pathology: GAIT & GAIT DISTURBANCES

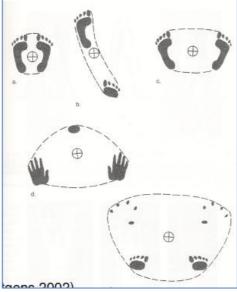

#### Gait – The Process of Walking:

- Tasks of Gait:
  - o Weight Acceptance
  - o Single Limb Support
  - o Advancement of Limb
- Phases of Walking:
  - Stance: (Foot is on the ground)

|                  |                                                     | Hip                                     | Knee               | Ankle               |  |  |
|------------------|-----------------------------------------------------|-----------------------------------------|--------------------|---------------------|--|--|
| Heel Strike      | Position:                                           | Flexed                                  | Mildly Flexed      | Dorsiflexed         |  |  |
|                  | Prime Mover/s:                                      | Psoas Muscle                            | Gravity            | Tibialis Anterior   |  |  |
|                  | Stabiliser/s:                                       | Gluteus Maximus Iliotibial Tract        |                    | Inverters/Everters  |  |  |
|                  |                                                     |                                         | Quadriceps         |                     |  |  |
| <b>Midstance</b> | Position:                                           | Flexed →Neutral                         | Extended           | Neutral/Dorsiflexed |  |  |
|                  | Prime Mover/s:                                      | Gluteus Maximus                         | -                  | -                   |  |  |
|                  |                                                     | Hamstrings                              |                    |                     |  |  |
|                  | Stabiliser/s:                                       | Gluteus Medius Quadriceps Femoris Intri |                    | Intrinsic Foot      |  |  |
|                  |                                                     | Gluteus Minimus                         | Medial Muscles     | Muscles             |  |  |
|                  |                                                     | Tensor Fascia Lata                      |                    |                     |  |  |
| <u>Toe-Off</u>   | Position:                                           | Neutral $\rightarrow$ Flexed            | Beginning to Flex  | Plantar Flexion     |  |  |
|                  | Prime Mover/s:                                      | Gluteus Maximus                         | -                  | Triceps Surae       |  |  |
|                  | Stabiliser/s:                                       | -                                       | Quadriceps Femoris | Toe Flexors         |  |  |
| •                | <ul> <li>Swing: (Foot is off the ground)</li> </ul> |                                         |                    |                     |  |  |

• Swing:

|       |               | Hip                | Knee                           | Ankle             |
|-------|---------------|--------------------|--------------------------------|-------------------|
| Swing | Position:     | Extended → Flexion | Flexed $\rightarrow$ Extension | Dorsiflexion      |
|       | Prime         | lliopsoas          | Gravity                        | Tibialis Anterior |
|       | Mover/s:      | Lateral Rotators   |                                |                   |
|       | Stabiliser/s: | Antag: Gluteus     | Quadriceps Femoris             | -                 |
|       |               | Maximus            | Antag: Hamstrings              |                   |




- Features of Gait:
  - Centre of Gravity
- Lower = More Stable

(eg. Zimmer frames/walking sticks)

- Base of Support Larger = More Stable
- Step Length

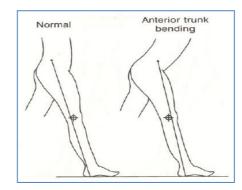
- Velocity
- Cadence (steps/minute)



Base of Support

#### • Factors Influencing Gait:

- Age/Maturation adult gait patter occurs at ≈10yrs
- Old age
- Gender
- Pain
- CNS Disorders Stroke/MS/Parkinsons/Kennedy's Disease/etc
- MSS Impairments Injury/Fused Joint/Tendonitis/Arthritis/etc
- Assistive devices
- Braces/Orthotics/Taping
- Habit
- Terrain
- Velocity
- Emotion
- Height
- Weight

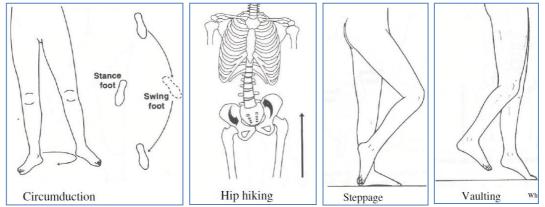

## • Methods of Gait Analysis:

- Visual Method (eg. In the doctor's office)
- Video Method (eg. Slo-mo camera)
- Gait Timing (Foot Switches/Sensored Catwalks)

## • Examples of Gait Abnormalities:

## Anterior Trunk Bending:

- Weak knee extensors need to 'lock' their knee to walk/
- Fused knee/
- Tight hip flexors/




- Trendelenburg (ie. 'Hip Drop'):
  - Hip-abductor weakness/



#### • Leg Length Discrepancy:

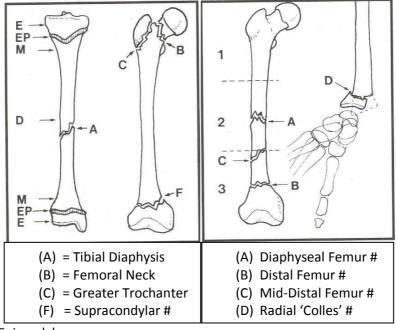
- Anatomical:
  - Actual difference in leg length
- Functional:
  - Eg. Neurological Muscle imbalance ie. Stroke/foot-drop/etc.
  - o Eg. Musculoskeletal Problems
- Patients may try to overcome this by:
  - o Circumducting the hip
  - Hip Hiking
  - o Steppage
  - $\circ$  Vaulting



- Excessive Knee Extension:
  - Ie. Snapping the knee into its 'locked' position midway through stance phase.
  - Due to Weak Knee Flexors.
- 'Foot Slap':
  - Ie. Lack of eccentric control of Dorsiflexion → following 'heel strike', the foot slaps the ground.

#### • 'Toe Drag':

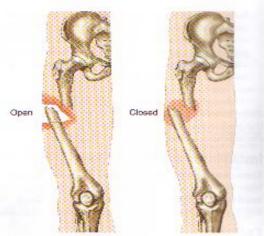
- Ie. Inadequate Dorsiflexion →during Swing Phase, the ankle hangs down in the plantarflexed position → drags along the ground.
- Insufficient 'Toe-Off':
  - Where the whole foot is lifted off the ground at once (as opposed to pushing off from the toes)
  - Due to:
    - Nerve lesions/
    - o Fusion of the ankle/
    - Archilles Tendon Problem (torn/inflamed/etc)
    - Pain in front (ball) of foot

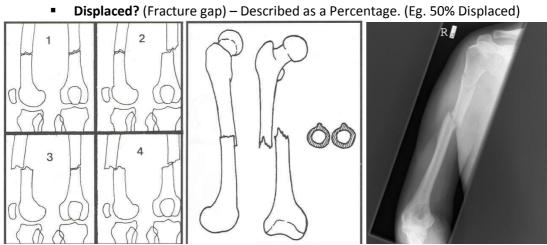

#### MUSCULOSKELETAL Pathology: MSK INJURY RADIOLOGY

#### XRays - Differentiate Normal from Abnormal and Describe an X-Ray:

• Describing an X-Ray:

0


- Fracture (#) or Dislocation?
- Which Bone?
  - Location? (Which part of the Bone?):
  - (E) Epiphysis
    - (EP) Epiphyseal Plate
    - (M) Metaphysis
    - (D) Diaphysis (Shaft) [In 'Thirds']
      - Eg. (1) Proximal 1/3
      - Eg. (2) Diaphyseal (mid) 1/3
      - Eg. (3) Distal 1/3)

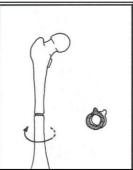



- Epicondyle
- Malleolus
- Etc.

#### • If It's a Fracture (#):

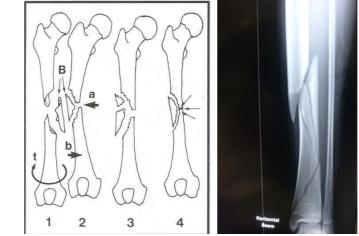
- Properties of Fractures:
  - Closed (Simple) or Open (Compound)?






1) Aligned; 2) 50% Displaced; 3) 80% Displaced; 4) 90% Displaced; Right) 100% Displaced

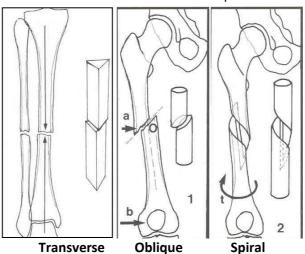
- Angulation Expressed in *Degrees* relative to Each Other. (Eg. A 30° Angulation)
  - 1) Fracture of the Mid 1/3 of Femur with distal fragment tilted laterally.
    - 2) Midshsaft fracture of the Tibia & Fibula with Distal Fragment tilted Anteriorly.




• Rotated – Can be hard to see on an X-Ray.



#### • Types of Fractures:


- **Complete**: A fracture in which bone fragments separate completely.
- **Incomplete**: A fracture in which the bone fragments are still partially joined.
- Greenstick: Occurs mostly in children with non-brittle bones. (An Incomplete #)
- Comminuted: 3 or More Pieces



• **Compacted**: A fracture caused when bone fragments are driven into each other.

#### • What shape is the #?

- Linear: A fracture that is parallel to the bone's long axis.
- Transverse: A fracture that is at a right angle to the bone's long axis.
- **Oblique**: A fracture that is diagonal to a bone's long axis.
- Spiral:
- A fracture where at least one part of the bone has been twisted.



#### • If Dislocation (AKA: "Luxation"):

#### • **1. Which Joint?**

- Shoulder (Gleno-humoral)
- Fingers (Inter-Phalangeal)
- Wrist
  - Usually accompanied by a fracture
     Usually accompanied by a fracture
- Elbow

Ankle

- Knees
- Usually accompanied by a fracture
- 2. What Direction?:
  - Superior/Inferior
  - Anterior/Posterior
- 3. Is there an Associated Fracture?
- 4. Any possible Neurovascular Compromises?

#### MUSCULOSKELETAL Pathology: MYOSITIS

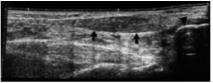
#### **INFECTIONS OF MUSCLE:**

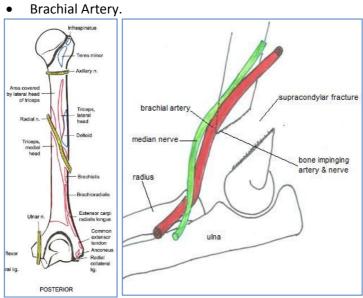
- Myalgia = muscle ache/stiffness
- Myositis = infection of the muscle (skeletal)
  - single or multiple muscle groups
- Spread via:
  - Soft tissue infection
    - gas gangrene (*C. perfringens*)
    - abscesses (S. aureus, GAS)
  - Haematogenous (le. Bacteraemia)

#### <u>Muscle Abscesses:</u>

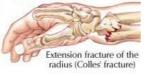
- Presentation:
  - Muscle & Joint Pain for a few days
  - Swelling Develops
- Pathogenesis:
  - Infection spreads along plane of muscle
  - Necrotic Muscles don't Regenerate → Local Wasting & Deformity
- Diagnosis:

Ultrasound – Look for discrete fluid collections → Aspirate for diagnosis or drained therapeutically





Image showing abscess (arrowheads) anterior to the sternum (curved arrows) and extending to the right of the midline.

Percutaneous aspiration yielded pus that grew *Staphylococcus aureus* 


#### MUSCULOSKELETAL Pathology: NEUROVASCULAR COMPROMISES

Possible Neurovascular Compromises From...:

- Common Fractures:
  - Humeral #:
    - Neck:
      - Axillary Nerve Damage
      - Mid-Shaft:
        - Radial Nerve Damage (As it closely traverses the lateral aspect of the humerus)
    - Supracondylar:
      - Median Nerve Damage



- Radial (Colles?) #:
  - Median Nerve (Compression)
  - Ulnar Nerve (Compression)
  - Radial Artery



#### • Wrist (Both Radius & Ulnar) #:

- Median Nerve Damage
- Ulnar Nerve Damage
- Radial Artery Laceration
- Ulnar Artery Laceration



- Femoral Shaft #:
  - Femoral Nerve
  - Sciatic Nerve
  - Femoral Artery



#### • Neck of Femur #:

- Sciatic Nerve
- Femoray Nerve
- Femoral Artery



#### • Ankle #:

- Post. Tibial Artery
- Tibial Nerve



#### - <u>Common Dislocations:</u>

- Shoulder (Gleno-humoral):
  - Axillary Nerve Damage
  - Musculocutaneous Nerve Damage
  - Radial Nerve Damage



• Hip:

Sciatic Nerve Damage



- Knee
- Usually accompanied by Severe Ligament Damage:
- Tibial Nerve
- Common Fibular Nerve
- Popliteal Artery
- Popliteal Vein



• Ankle

- Usually accompanied by a Fracture:

- Post. Tibial Artery
- Tibial Nerve



#### Laceration:

- $\circ$  Volar (Palmar) Aspect of Wrist (Eg. In Attempted Suicide):
  - Median Nerve
  - Ulnar Nerve
  - Radial Artery
  - Ulnar Artery
  - Basilic Vein
  - Cephalic Vein
  - (+ Wrist Flexor Tendons)

#### What Functional Impairments Suggest Damage to These Nerves?:

- Upper Limb:

| <u>Nerve</u>              | <u>Site of Injury</u>   | <u>Paralysis</u>                                                                     | Motor Loss                                                                  | Sensory Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|-------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axillary Nerve            | Axilla                  | Deltoid                                                                              | Shoulder Abduction                                                          | Deltoid Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Musculocutaneous<br>Nerve | Axilla                  | Arm Flexors                                                                          | Forearm Flexion                                                             | Lateral Forearm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Radial Nerve              | Axilla                  | Arm Extensors<br>+ Supinator                                                         | Elbow Extension,<br>Supination,<br>Wrist Extension                          | Lateral Dorsum of<br>Hand, & Posterior<br>Arm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | Cubital Fossa           | Arm Extensors,<br><i>Except</i> Triceps                                              | Supination,<br>Wrist Extension                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | Elbow                   | Wrist Flexors,<br>Thenar Muscles,<br>Lateral 2x Lumbricals                           | Weak Wrist Flexion,<br>Thumb Opposition,<br>Lateral 2x Finger-Flexion       | Lateral 3.5 Fingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median Nerve              | Wrist                   | Thenar Muscles,<br>Lateral 2x Lumbricals                                             | Thumb Opposition,<br>Lateral 2x Finger-Flexion                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ulnar Nerve               | Above Elbow<br>At Wrist | Wrist Flexors,<br>Hypothenar Muscles,<br>Medial 2x Lumbricals<br>Hypothenar Muscles, | Weak Wrist Flexion,<br>Medial 2x Finter-Flexion<br>Medial 2x Finter-Flexion | Palm,<br>Medial 1.5 Fingers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | AL WIISL                | Medial 2x Lumbricals                                                                 |                                                                             | and the second sec |

| - Lower Limb:   |                 |                         |                  |                   |  |  |
|-----------------|-----------------|-------------------------|------------------|-------------------|--|--|
| Nerve           | Site of Injury  | Paralysis               | Motor Loss       | Sensory Loss      |  |  |
| Femoral Nerve   | Femoral Neck,   | Quadriceps Femori       | Knee Extension,  | Antero-Medial Leg |  |  |
|                 | Shaft #         |                         | Hip Flexion      |                   |  |  |
| Obturator Nerve | Hip             | Hip Adductors           | Hip Adduction    | Medial Thigh      |  |  |
| Sciatic Nerve   | Hip,            | Hamstring Function,     | Knee Flexion,    | Most of           |  |  |
|                 | Femur #         | Plantar-Flexors,        | Plantar-Flexion, | Post.Thigh, Leg & |  |  |
|                 |                 | Dorsi-Flexors,          | Dorsi-Flexion,   | Foot              |  |  |
|                 |                 | Intrinsic Foot Muscles. | Ankle Eversion,  |                   |  |  |
|                 |                 |                         | Toe Movement     |                   |  |  |
| Tibial Nerve    | Knee, Tibial #, | Plantar-Flexors,        | Plantar-Flexion, | Posterior Leg     |  |  |
|                 | Laceration      | Intrinsic Foot Muscles  | Toe Movement     |                   |  |  |
| Fibular Nerve   | Knee, Fibular # | Dorsi-Flexors,          | Dorsi-Flexion,   | Anterio-Lateral   |  |  |
|                 | Laceration,     | Intrinsic Foot Muscles  | Toe Movement,    | Leg               |  |  |
|                 | Compression     |                         | Ankle Eversion,  |                   |  |  |

#### Testing for Neurovascular Compromise:

- Presence of Vascular Compromise?
  - Bleeding/Haematoma  $\rightarrow$ Probably
  - No Distal Pulses  $\rightarrow$ Distal Pulses Present→
- Probably Probably Not
- 0 Presence of Neurological Compromise?
  - Sensory Alterations/ Loss  $\rightarrow$ 
    - Probably Probably
  - Impaired Motor Function  $\rightarrow$ Neither of the above  $\rightarrow$ Probably Not

#### MUSCULOSKELETAL Pathology: OSTEOARTHRITIS

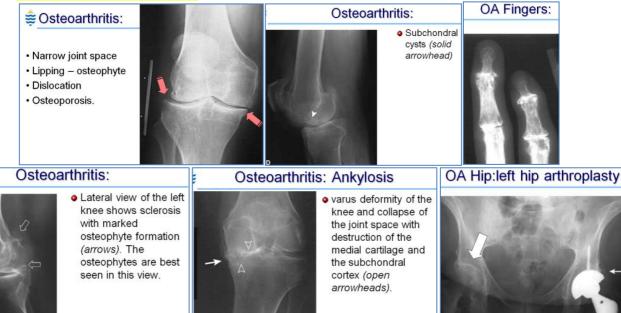
#### **OSTEOARTHRITIS** (Degenerative):

- Aetiology:
  - Degenerative Wear & Tear
  - Pathogenesis (Mechanical, then Inflammatory):
    - Cartilage Hydration Decreases with Age  $\rightarrow$  Less Resistant to Friction  $\rightarrow$  Cartilage Erosion
      - → Exposure of Bone → Grinding → Mechanical Damage & Inflammation

#### - Morphology:

0

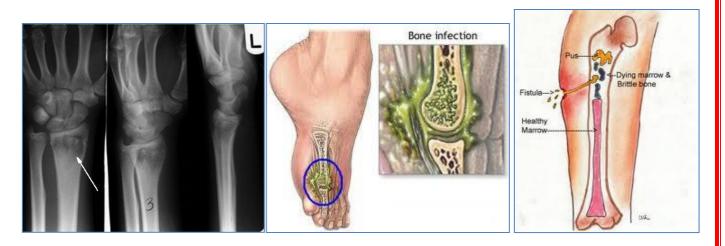
- o 1. Eburnation of Bone (Shiny, thickened, hardened bone)
- o 2. Cartilage Degeneration
- $\circ$  3. Peripheral Osteophytes  $\rightarrow$  "Joint Lipping" (New bone formation around the joint edges)




#### - Clinical Features:

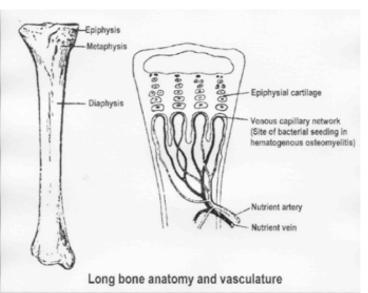
- Typically in >40yrs
- Symptoms:
  - Large, Weight-Bearing Joints (Knees, Spine)
  - Nodular/Bulky, Painful Joints + Joint-Line Tenderness
  - Pain Worse with Activity & Cold Weather
  - Pain Better with Rest.
  - Joint Instability & Crepitus (due to irregular joint surface)
  - ↓ROM & Muscle Wasting
  - Bony Overgrowths (Osteophytes) → Nodules ("Bouchard's Nodes" in PIP Joints & "Heberton Nodes" in DIP joints, or "Bunions" in the Toes).

#### - Diagnosis:


- Normal Bloods
- Imaging (Narrowing Joint Space, "Joint Lipping", Ankylosis & Varus Deformity)
- <u>Treatment:</u>
  - SIMPLE Analgesia (Panadol Osteo)
  - Surgery (Joint Replacement / Spinal Fusion)
  - Maintain Physical Activity

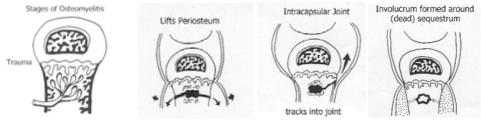


#### MUSCULOSKELETAL Pathology: OSTEOMYELITIS


#### **OSTEOMYELITIS:**

- <u>Aetiology:</u>
  - Bone Infection Bacterial, Viral or Fungal.
- Pathogenesis:
  - o Bacterial S.aureus (Commonest), Pseudomonas (Iatrogenic), H.influenzae (Children)
- Morphology:
  - o <u>Macro:</u>
    - Local Swelling & Redness
  - <u>Micro:</u>
    - Medullary Inflammation & Oedema
- Clinical Features:
  - History of Infection @ Another Site + Direct Trauma to the Area
  - $\circ$  Local Tenderness, Swelling, Heat at Metaphysis &  $\downarrow$ ROM.
  - (+ Signs of Acute Sepsis Fever, Chills, Dehydration, Lethargy)
- Diagnosis:
  - $\circ$  **Blood -**  $\uparrow$  ESR,  $\uparrow$  WBC,  $\uparrow$  CRP, Positive Cultures
  - X-Ray Normal if Acute; Lucencies after 2-4wks; "Onion-Skin" Appearance if Chronic
  - o CT/MRI Medullary Oedema, Cortical Destruction & Articular Damage.
- <u>Treatment:</u>
  - Long Course IV Antibiotics (4-6wks) Rifampicin / Erythromycin / Tetracycline / Vancomycin
  - Irrigation/Debridement/Amputation
  - **Replacement of Affected Prostheses**




#### **BONE INFECTIONS (Osteomyelitis):**

- Anatomy & Vascular Supply of a Long Bone:
  - Epiphysis
    - Epiphysial Cartilage
  - o Metaphysis
  - Diaphysis



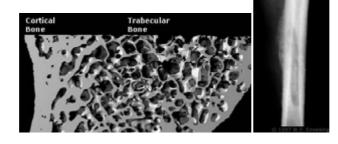
#### Osteomyelitis:

- Typical Causative Organisms:
  - S. aureus
  - Group B streptococci
  - E. coli
- $\circ$  Stages of Osteomyelitis:



- $\circ$  Acute Vs Chronic:
  - ACUTE:
    - Represents the clinical picture of infection in its early stage and usually includes systemic effects
  - CHRONIC (If Untreated):
    - An infection that is well established in bone (weeks years)
    - Results when bone tissue dies as a result of the lost blood Supply

#### • Source of Infection:


- o (1) External Sources le. Direct introduction from environment (trauma, iatrogenic)
  - Penetrating Wound
    - Foreign Object Nail/Bullet/Thorn etc.
  - Postoperative
    - - fracture, prosthesis

Septic hip replacement



o (2) Haematogenous (Internal) Sources – (Eg. Infected soft tissues/Bacteraemia):

- Mechanism of Haematogenous Infection:
  - Infection tends to occur @ the Epiphysis where there is Rich Blood Supply.
  - "Sludging" =
    - o Slowing of capillary blood-flow @ the distal Metaphysis
    - $\circ \rightarrow$  Predisposes vessels to thrombosis
    - $\circ \rightarrow$  Localized Bone Necrosis & Bacterial Seeding.
- Age & Anatomy Affects Location & Mechanism of Infection:
  - In Infants:
    - Soft, Spongy Bone
    - $\circ$   $\;$  Have a Loose Connection between the Periosteum & Cortex  $\;$ 
      - →Means that infections can spread to Sub-Periosteal Space
      - →Results in abscesses in the Sub-Periosteal Space
        - $\rightarrow$ Inappropriate bone formation occurs
        - →Results in Involucrum



- In Children:
  - Structure:
    - Bone is more calcified
    - Periosteum adhered to cortex
    - No Blood Vessels connecting metaphysis & epiphysis
  - $\circ$  Infection  $\rightarrow$  Infection contained in metaphysis
    - ightarrow Leads to increased pressure & vascular occlusion
      - → Results in bone necrosis (sequestrum)
  - o Treatment:
    - Surgical Removal

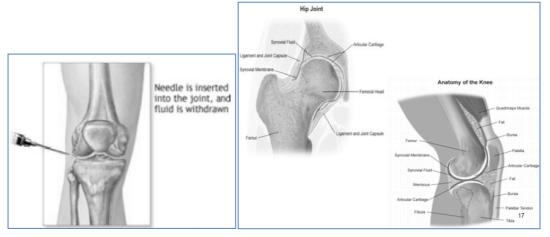


- In Adults:
  - Different Presentation:
    - Rarely involve long bones (Cf Infants & Children)
    - Instead, typically involve vertebrae → Can cause Vertebral Fusion
    - o Begins in disc space & spreads to vertebrae above & below



(fusion of the C 6/7 disc space - caused by a previous pyogenic infection which had resolved)

- In Diabetics:
  - Diabetes →
    - vascular insufficiency
    - nerve damage
    - Pathogenesis:
      - usually begin as soft tissue infections on the feet
      - penetrate into bone
      - Poor Blood Supply  $\rightarrow \downarrow$  Immune Barriers
    - o Treatment: Difficult necrotic bone with poor blood supply
      - phagocytes & antibiotics can't get to Site.
      - debridement/amputation




#### **INFECTION OF JOINTS:**

- Things to Find Out:
  - $\circ$  Is it infectious?
  - $\circ$  How did it get that way?
  - What is the infecting organism?

#### • Answered by:

- Patient history
- $\circ \quad \text{Physical examination} \quad$
- o Analysis of joint aspirate



#### • Eg. Septic Arthritis:

- Pathophysiology:
  - Purulent invasion of a joint by an infectious agent  $\rightarrow$  joint Inflammation (Arthritis)
- Causative Organisms:
  - Commonly Gram Positive Aerobes (80%)
    - Staphylococcus aureus (60%)
    - Streptococcus pneumoniae

#### • (NB: "Reactive Arthritis"):

• Reactive Arthritis = Arthritis caused by an immune consequence of an infection, but not directly attributable to the infection itself.

#### Infections of Muscle:

- Myalgia = muscle ache/stiffness
- **Myositis** = infection of the muscle (skeletal)
  - single or multiple muscle groups
- Spread via:

\_

- Soft tissue infection
  - gas gangrene (C. perfringens)
  - abscesses (S. aureus, GAS)
- Haematogenous (Ie. Bacteraemia)
- Muscle Abscesses:
  - $\circ$  Presentation:
    - Muscle & Joint Pain for a few days
    - Swelling Develops
  - Pathogenesis:
    - Infection spreads along plane of muscle
    - Necrotic Muscles don't Regenerate → Local Wasting & Deformity
  - Diagnosis:
    - Ultrasound Look for discrete fluid collections → Aspirate for diagnosis or drained therapeutically

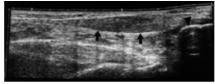
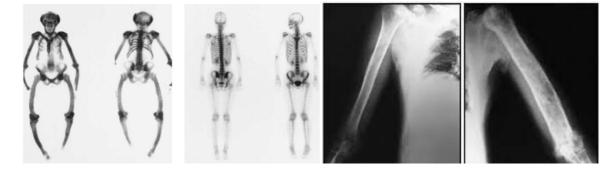



Image showing abscess (arrowheads) anterior to the sternum (curved arrows) and extending to the right of the midline.

Percutaneous aspiration yielded pus that grew *Staphylococcus aureus* 

#### MUSCULOSKELETAL Pathology: OSTEOPOROSIS & PAGETS DISEASE

#### **OSTEOPOROSIS ("Porous Bones"):**


- WHO: "Osteoporosis" = "A Bone Mineral Density of >-2.5 StDs below the mean BMD"
  - NB: "Osteopenia" = "A BMD of *between* -1.0 & -2.5 StDs below the mean BMD"
- <u>Aetiology:</u>
  - Primary:
    - Type 1: Postmenopausal Osteoporosis (Typically Vertebrae & NOF; females only)
      - $\downarrow$  Oestrogen  $\rightarrow$   $\uparrow$  Osteoclast Activity
    - Type 2: Or Senile Osteoporosis (Affects all bones, males & females)
      - $\downarrow$ Synthetic/Replicative Ability of Osteoblasts  $\rightarrow \downarrow$ Osteoblast Activity
    - Secondary:
      - Endocrine (Cushings, 个PTH, Hyper & Hypo thyroid, DM, Acromegaly, Addisons)
      - Pregnancy & Lactation
      - Myeloma
      - Malnutrition/Malabsorption
      - Drugs (Corticosteroids, Chemo, etc)
      - Alcohol
        - Immobility
- <u>Pathogenesis:</u> ○ 个Oste
  - $Osteoclast/\downarrow Osteoblast$  Function Imbalance  $\rightarrow \uparrow$  Bone Resorbtion  $\rightarrow$ 
    - →Porous Bones
      - $\rightarrow$   $\downarrow$  Bone Mass (Bone Mineral Density)
- Morphology:
  - $\circ$  ~ Trabeculae are Thinner & Fewer than Normal
- Clinical Features:
  - Symptoms:

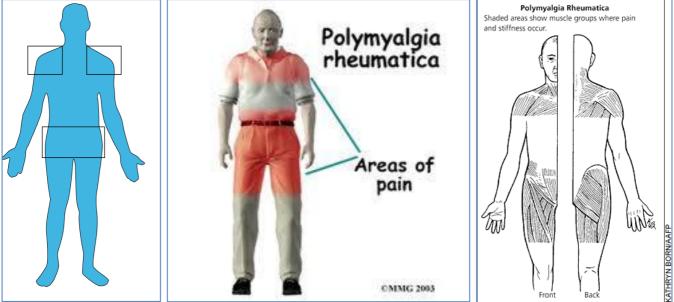
- Often Asymptomatic until Fracture.
- Complications:
  - "Fragility Fractures" (= Fractures from minimal trauma Eg. From standing height)
     NB: Rel-Risk DOUBLES with every 1.0 StDeviation Below the Mean!!
    - (<30% Mortality in Elderly; 40% Morbidity)
    - Vertebral Compression Fracture can → Spinal Cord Compression, Cauda Equina Syndrome
- Investigations:
  - o (Plain XRay)
  - o \*\*DXA (Dual-energy X-ray Absorptiometry) Bone-Mineral-Density Scan:
    - \*\*ESSENTIAL: Lumbar Spine + Hip
      - \*OPTIONAL: Forearm
      - Interpretation of T-Scores & Z-Scores:
        - T-Score = Pt's BMD Vs. Young-Normal BMD
          - Used only for Post-Menopausal Women
          - Z-Score = Pt's BMD Vs. Age-Matched Mean BMD
            - Used only for people <50yrs (Pre-menopausal Women, Men, & Children)
  - + Ix for underlying cause:
    - ESR (Exclude Myeloma)
    - Vit.D Level (Exclude 2° Osteoporosis)
    - PTH Level (Exclude Hyperparathyroidism)
    - TSH Level (Exclude Hyperthyroidism)
- Treatment & Prevention:
  - Pharmacological:

- \*\*Bisphosphonates (Eg. Alendronate [Fosamax], Risedronate) (Monthly Dose)
- **Or** Stronium  $\rightarrow$  (Stimulates Ca-Deposition & Inhibits Bone Resorption)
- +/- Hormonal (SERMS (Eg. Raloxifene) or HRT (If Perimenopausal/Post-Menopausal))
- OTC Supplements (Calcium & Vit D)
- Occupational (Reduce Falls Risk, 个Weight-Bearing Exercise)

#### PAGET'S DISEASE OF THE BONE:

- <u>Aetiology:</u>
  - o Genetic
  - Pathogenesis:
    - $\circ$  Continuous Remodelling of Bone (Excess Turnover)  $\rightarrow$  Weak, Deformed Bones & Arthritis.
- Morphology:
  - o Markedly Thick, Deformed bones
- Clinical Features:
  - $\circ \quad \text{May affect One or All bones}$
  - $\circ \quad \textbf{Young-middle age}$
  - Symptoms:
    - Bone Pain, Arthritis
    - Pathological Fractures (Thick Bones, but Fragile)
    - Sclerosis, Deformity
    - Nerve Compression, Deafness
- Diagnosis:
  - XRay:
    - Advancing Osteolytic Areas in Long Bones or Skull
    - Compensatory Osteoblastic activity → Bone Thickening
  - Alkaline Phosphatase Level (with normal Ca & PO4)
- Complications:
  - o Osteosarcoma
- <u>Treatment:</u>
  - *Bisphosphonates* (Kills Osteoclasts)
  - **Calcitonin** (Inhibits Osteoclast Activity)
- Prognosis:
  - $\circ \quad \text{No Cure}$
  - o Good Prognosis if treated before major bone changes have occurred.




#### **MUSCULOSKELETAL Pathology: POLYMYALGIA RHEUMATICA**

#### **POLYMYALGIA RHEUMATICA (PMR):**

### Aetiology:

- Unknown
- Association with Giant-Cell Arteritis (Temporal Arteritis [A Vasculitis]) 0
- + Genetic (HLA-DR4) Susceptibility 0
- + Possible Viral Trigger (Parvovirus, Parainfluenza Virus, Adenovirus)
- Pathogenesis:
  - Autoimmune Attack on the Joints & Muscles
- **Clinical Features:** 
  - Older Females (2F:1M, >50yrs)
  - Severe Symmetrical Myalgia (Not Arthralgia) of Proximal Extremities (Shoulder/Pelvic Girdle) 0
    - + Muscle Tenderness, BUT NO Weakness or Atrophy.
    - Myalgia Worst in Mornings
  - + Constitutional Symptoms (Fever, Weight Loss, Fatigue, Anorexia, Anaemia, Malaise) 0
- **Diagnosis:** 
  - >50yrs
  - >2 Muscle Groups Affected
  - Elevated ESR & CRP
  - **Responsive to Corticosteroids** 0
  - NB: NORMAL Creatinine Kinase 0
- Treatment:

# Corticosteroids



#### **MUSCULOSKELETAL Pathology: RHEUMATOID ARTHRITIS**

#### RHEUMATOID (AKA: "Seropositive") ARTHRITIS (Commonest):

- Aetiology:
  - Genetic Autoimmune
- **Pathogenesis:** 
  - Genetic (HLA-DR4 & -DR1 Genes) → Rheumatoid Factor Production (Anti-IgG Ab) → Autoimmune 0
  - → Macrophage-Mediated Local Joint Inflammation & Destruction 0
- Morphology:

0

- **Erosion** of the Articular Cartilage down to the bone. 0
  - Pannus Inflamed thickened hyperplastic synovium with papillary projections
    - (NB: Normal synovium is very thin and smooth and shiny)
- Fibrous Ankylosis (Bone Fusion) 0

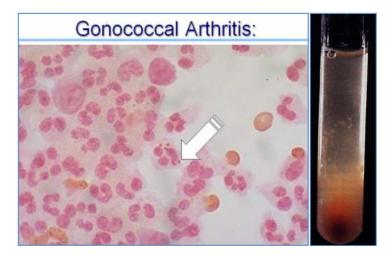


#### **Clinical Features:**

- Chronic, Multisystem Condition
- 0 Onset Age: 20-40yrs
- Symmetrical, POLY-arthritis, with Morning Stiffness.
  - Particularly MCP & PIP Joints of the Hand
    - "Morning Stiffness" (As with all Inflammatory Arthroses)
    - Joint Crepitus
- Signs: 0
  - "Swan-Neck Deformity" (Ulnar Deviation & Subluxation of the MCP Joints)
  - (Fusion) & Restriction of movement  $\rightarrow$  Muscle Wasting Ankylosis
  - **Dermatologic** Rheumatoid Nodules (eg. Elbows)
  - Vasculitis - Digital Infarcts (can cause gangrene)
  - Ophthalmologic Dry eyes, Scleritits
  - Pulmonary - Fibrosis, lung nodules, pleuritis, effusion
  - Cardiac - pericarditis, pericardial effusion, valvular defects, conduction defects
    - GI - PUD (from NSAIDS), dry mouth
  - Renal - Amyloidosis --> Proteinuria
  - Hepatic
    - Nodules (Nodular regenerative hyperplasia), portal fibrosis - Cervical spine instability, peripheral nerve entrapment Neurologic
  - Haematologic Lymphadenopathy, splenomegaly and leukopenia, amyloidosis, anaemia.

#### **Diagnosis:**

• Diagnostic Criteria:


| Requ | uires 4 <sup>+</sup> of the Following Features for Diagnosis: |
|------|---------------------------------------------------------------|
| •    | Morning Stiffness                                             |
| •    | >3 Joints                                                     |
| •    | MCP/PIP/Wrist Joints.                                         |
| •    | Symmetrical Arthritis                                         |
| •    | Rheumatoid Nodules in Skin                                    |
| •    | RA Seropositivity (Rheumatoid Factor in Serum)                |
| •    | X-Ray Changes: Erosions                                       |

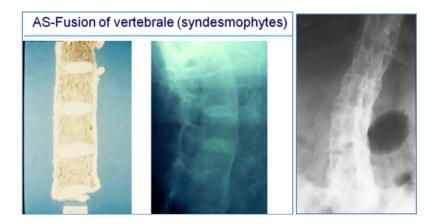
- Lab: 0
  - Old Serum Rheumatoid Factor Positive (Anti-IgG IgM Antibodies) –Hence "Seropositive"
  - New ACCP ("Anti-Cyclic Citrullinated Peptide Antibody Test) 95% Specificity
  - + Elevated ESR
- **Treatment:** 
  - DMARDS (*Methotrexate*, *Sulfasalazine*) 0
  - 0 **NSAIDs -** For Symptomatic Control
  - Corticosteroids: Short-term adjuvants. 0

#### MUSCULOSKELETAL Pathology: SEPTIC ARTHRITIS

#### Septic Arthritis (Infection):

- <u>Aetiology:</u>
  - $\circ \quad \text{Joint Infection} \quad$
  - **Common Bugs** N.gonorrhoea, S.aureus, Other less commons.
- Pathogenesis:
  - Routes of Spread Haematogenous (Commonest), Direct from Adjacent Tissue, latrogenic.
- <u>Clinical Features A Medical Emergency!</u>:
  - (If Gonococcal → Preceding Bacteraemia with Maculopapulovesicular Skin Lesions & Migrating Polyarthritis → Settling into Monoarthritis – Typically Knee)
  - o Typically Severe Mono-Arthritis. (Joint often held in slight flexion to  $\downarrow$  Pain)
    - Swelling
    - Erythema
    - Hot
    - ↓ROM due to Pain
  - o + Fever + Malaise
  - (+/- Signs of Acute Sepsis Fever, Chills, Dehydration, Lethargy)
- Diagnosis:
  - Joint Aspirate + MCS.
    - (Crystals?, Gram Stain?)
  - **FBC** (↑WBC)
  - ↑ESR, CRP
  - $\circ$  Endocervical/Urethral Swab or Urine PCR for Gonococcal.
- <u>Treatment:</u>
  - If Gonococcal Azithromycin, Ceftriaxone or Doxycycline
  - If Staph Ampicillin, Erythromycin or Vancomycin
  - Analgesia
  - Arthroscopy Aspiration & Washout
  - (+/- Surgical Debridement/Joint Replacement)
  - (NB: DO NOT USE Intra-Articular Steroids!!)
- Complications:
  - Avascular Necrosis of Femoral Head (if **†**Intra-Articular Pressure due to Pus)
  - o Cartilage & Epiphyseal Destruction
  - Osteomyelitis (Bone Infection)




#### MUSCULOSKELETAL Pathology: SERONEGATIVE (Non-Rheumatoid) ARTHRITIS

#### **ANKYLOSING SPONDYLITIS** – ("Fusing Spinal Arthritis"):

- <u>Aetiology:</u>
  - Genetic (HLA-B27) Association
  - o 100% Concordance in Identical Twins
  - Pathogenesis:
    - Enthesitis (Inflammation of Ligament Insertion Points on bone)
      - (NB: In spine:  $\rightarrow$  Ossification of Outer Fibres  $\rightarrow$  Bridging Syndesmophytes  $\rightarrow$  Fusion)
- Morphology:
  - o Syndesmophytes (Bone formation between the intervertebral disks)
  - Ankylosis
- Clinical Features:
  - Young Males (3M:1F, Onset between 15-25yrs)
  - Symptoms:
    - Axial:
      - Mid-Lower Back Pain + Stiffness
      - Sacroiliitis → Persistent Buttock Pain
      - Postural Changes (个Kyphosis)
      - Appendicular:
        - Asymmetric Large-Joint Arthritis (Hips & Shoulder) + Morning Stiffness:
    - Extra-Articular Manifestations:
      - Occular: Iritis, Anterior Uveitis
      - Heart: Aortitis, Aortic Regurgitation, Pericarditis.
      - Kidney: IgA Nephropathy & Amyloidosis

#### - Diagnosis:

- Clinical:
  - **↑Occiput-to-wall distance** (Kyphosis)
  - ↓ROM of Spine
  - ↓ Chest Wall Expansion
  - Painful Sacroiliac Joint
- X-Ray:
  - Sacroiliac Joint: "Pseudowidening" of joint due to Erosion
  - Spine: "Squaring of Edges" of Vertebral Bodies from Erosion & Sclerosis → "Bamboo Spine"
- Treatment:
  - DMARDs (*Sulfasalazine*/Methotrexate) for Peripheral Arthritis
  - $\circ$  Infliximab (TNFa-Inhibitors)  $\rightarrow$  Treats underlying inflammation.
  - NSAIDs (Symptomatic Only)
  - Physio & Regular Exercise (Supportive Only)
  - Surgery (Hip Replacement / Vertebral Osteotomy)
- Prognosis:
  - o Morbidity (Due to Spinal Deformity), Not Mortality.



#### REACTIVE ARTHRITIS (Eg. Enteropathic Arthritis & Reiter's Syndrome):

- = Any Arthritis FOLLOWING an INFECTION. (Eg. Rheumatic Fever, Reiter's Syndrome, etc)
- <u>Aetiology:</u>
  - Post-Infective (Typically either GI or UTI):
    - GI: Shigella, Salmonella, Campylobacter (Enteropathic Arthritis)
    - UTI: Chlamydia (Reiter's Syndrome)
  - + Genetic Susceptibility:
    - HLA-B27-Positive, Middle-Aged Males (10M:1F, 20-40yrs)
- Pathogenesis:
  - Autoimmune Arthritis Initiated by Bacterial Infection
- Clinical Features:
  - **Onset** Within 1mth Post-Infection
  - **Duration:** Typically Self-Limiting (Weeks-Years)
  - Symptoms:
    - Articular: Asymmetric, Peripheral Arthritis
    - Extra-Articular: Iritis/Conjunctivitis, Urethritis/Cervicitis (if Chlamydia),
- Diagnosis:
  - **o** Clinical Diagnosis Only
  - Reiter's Clinical Triad 1. Arthritis, 2. Conjunctivitis, 3. Urethritis/Cervicitis.
  - Lab Findings are Normal
  - o Cultures are Sterile
- <u>Treatment:</u>
  - o Antibiotics if Infection is Present
  - o NSAIDs
  - o Intra-Articular Steroid Injection
  - Exercise

#### **PSORIATIC ARTHRITIS:**

- <u>Aetiology:</u>
  - o Complication of Psoriasis (Unknown Aetiology but Genetic/Immunologic Association)
- Pathogenesis:
  - $\circ$  Autoimmune T cells infiltrate the Skin & Joints  $\rightarrow$  Inflammation
- Morphology:



#### - Clinical Features:

- Primary Disease Skin:
  - Plaque covered with Silvery Scales (Due to Hyperkeratosis & Parakeratosis)
  - Oncholysis (Nail Pitting)
- Multisystem Disorder:
  - \*Symmetric Arthritis of DIP Joints (Similar to RA) (Seen in 30% of Psoriasis Cases)
    - + "Dactylitis" (Sausage-Fingers & Sausage-Toes)
    - + (Achilles Tendonitis)
    - + (Plantar Fasciitis)
  - **Eye** Conjunctivitis & Iritis
- <u>Treatment:</u>
  - DMARDS (Methotrexate / Sulfasalazine)
  - o **Corticosteroids**
  - o Moisturizers
  - Phototherapy
- Prognosis:
  - Lifelong Condition No Cure.

#### Rheumatoid Arthritis, Osteoarthritis & Gout

#### Case 1:

- o 19yo Female
- Stiffness & Pain in Joints (Metacarpo-Phalangeal Joints, Metatarso-Phalangeal Joints & Back) all occurring at the same time
- $\circ$  Worse in the morning
- o For long time
- o No Redness/Hotness But some swelling
- o No family history
- Used to play hockey
- Has been taking neurofen Not helping much anymore.
- Noticed Dry Eyes & Dry Mouth
- o DDX:

#### • Rheumatoid Arthritis + Sjogren's Syndrome

- Psoriatic Arthritis
- o SLE
- o RSI
- Gout (If older)

#### • **OE:**

- $\circ$  GALS
- $\circ$  Hands
- o Back
- **Ix:**
- $\circ$  ACCP 95% Specificity (Better and cheaper than rheumatoid factor)
- o FBC
- o Uric Acid Levels (Gout)
- o ANAs (Lupus)
- Hand, spine, feet XR
  - RA:
    - Osteophytes about the joint margins
    - Decreased Joint Space
    - Erosion
    - Increased Trabecular Thickness
  - Osteoarthritis
    - Focal Cartilage Loss
    - Subchnodral Sclerosis
  - Bone Cysts
  - Central Marginal Periosteal
  - Osteochondral Loose Bodies.
- Treatment:
  - DMARDs:
    - Sulfasalazine
    - Methotrexate
    - Imfliximab
    - Leflunomide
  - Glucocorticoids

#### Case 2:

- 52yr Pub Owner
- PC:
- Walking stiffly on R-Foot
- Sore Foot Hard to walk on
- o 2wks duration
- o Comes and goes
- o 6mths ago started
- $\circ \quad \text{No precipitating factors} \\$
- o Hurts all the time
- $\circ \quad \text{Some relief with foot elevation} \\$
- 8/10 pain on weight bearing
- $\circ$   $\$  Can't wear shoes due to pain Hurts to touch
- o Takes Panamax
- $\circ$  Very Red, Very Swollen
- $\circ$   $\;$  Localised to the ball of the big toe.
- o Diet:
  - Eats lots of shellfish
  - Has 5-6 beers each day
  - Drinks a lot of red wine too
  - Drinks lots of tea & alcohol Rarely drinks just water
- HPC:
  - o Morbidly Obese
  - Type 2 Diabetes
- Meds:
  - $\circ$   $\,$  Something for heart  $\,$
  - o Something for Blood Pressure
  - o Cholesterol
  - Sugars (Type II)
  - Misses doses 2-3times/week
- FamHx:
  - o Father:
    - Gout
    - Heart
  - Mother:
    - Emphysema
- Dx:
  - o Gout

#### Case 3:

- 69уо
- PC:
  - Very bad joint pain R Shoulder
  - o Used to be a National Level Javelin Thrower
  - Has had several surgeries on it
  - o Getting worse
  - $\circ$   $\;$  Starting to limit range of movement in joint cant lift further than 90  $\;$
  - $\circ$   $\;$  Has had a lot of trouble with the shoulder for >40yrs  $\;$
  - o Nothing really relieves the pain
  - $\circ$  Worse when she uses it
  - Worse towards the end of the day
  - $\circ$  Has broken other arm (#Radial Head) and now has some pain in the elbow
  - o No Weakness in Arm
- PMH
  - None
- Meds:
  - o Panadol & Neurofen
  - o Glucosamine
- SurgHx:
  - o R Shoulder operations
  - Arthroscopies on L Knee + washouts
  - $\circ$  Appendectomy
- Sochx:
  - $\circ$  ~ Used to be a PE teacher
  - o Lives in Townsville
- SexHx:
  - $\circ \quad \text{Sexually active} \quad$
  - Monogomous for past 20yrs
- DDX:

#### $\circ \quad \textbf{Osteoarthritis} \\$

- o Rotator cuff injury
- o Bursitis
- o Frozen shoulder
- Septic Arthritis
- lx:
- o Examination
- o Shoulder XR
- Rotator Cuff US

#### Case 4:

- A 37-year-old woman gradually developed painful wrists over 3 months; she consulted her doctor only when the pain and early morning stiffness stopped her from gardening.
- On examination, both wrists & metacarpophalangeal joints of both hands were swollen and tender but not deformed.
- She had raised C-reactive protein (CRP) level (27mg/l) (NR <10) but a normal haemoglobin and white-cell count. A latex test for rheumatoid factor was negative and antinuclear antibodies were not detected.
- ? Degenerative or Inflammatory (morning / through the day)
- ? Mono or poly arthritis
- Diagnosis ? early rheumatoid arthritis
- Treated with ibuprofen. Despite some initial symptomatic improvement, the pain, stiffness and swelling
  of the hands persisted and 1 month later both knees became similarly affected. She was referred to a
  rheumatologist.
- This woman now had definite X-ray evidence of *rheumatoid arthritis* and, in view of the continuing arthropathy, her treatment was changed to weekly low-dose methotrexate. This has controlled the arthritis for several years and no further erosions have developed.

#### Case 5:

- A 21y man presented with acute pain and swelling of one knee. On examination, the joint was tender and restricted in movement. X-ray of the knee showed periarticular osteoporosis. No history of trauma.
- He has had intermittent backache over the last 5 years, although daily exercises have limited the stiffness.
- On investigation, he had a raised ESR of 102mm/h, mild anaemia (Hb 106g/l) but no detectable serum rheumatoid factor. The knee effusion contained a polymorphonuclear leucocytosis but no organisms or rheumatoid factor. No diagnosis was made but he improved with empiric treatment with indomethacin.
- Fifteen months later he developed an iritis in his left eye, low back pain and stiffness.
- His peripheral joints were normal but pain could be elicited in both sacroiliac joints.
- tissue typing revealed that he was HLA-B27 positive.
- X-rays of his pelvis showed the classic changes of ankylosing spondylitis and He has developed bony ankylosis between the lumbar vertabrae.
- Six months later, she developed two subcutaneous small, painless, firm immobile, nodules on the left elbow.
- A test for rheumatoid factor was now positive (titre 1/64). X-rays of the hands showed bony erosions in the metacarpal heads.
- She still had a raised CRP (43mg/l) but normal serum complement (C3 and C4) levels and, she had a biopsy which showed <u>pannus</u> histologically.

#### **Arthritis General:**

- Simple Diagnostic features: 0
  - Pain (Due to Inflammation of Joint Capsule, Synovium &/or Periosteum)
  - Swelling (Due to Inflammation &/or Effusion)
  - Restrictive movement (Due to Pain, Fluid, Swelling or Damage)
  - Deformity (Due to Mal-alignment, Erosion, Ankylosis) (usually a late sign)

#### Monoarthritis (Local, Asymmetric): 0

- Eg. Septic
- Eg. Trauma
- Eg. Osteoarthritis
- Eg. Tumour
- Eg. Crystal (Gout)

#### **Polyarthritis (Chronic & Symmetrical):** 0

- Eg. Autoimmune (RA, Ankylosing Spondylitis, Reiter's/Reactive)
- Eg. Degenerative (Osteoarthritis)
- Eg. Crystal (Gout)

| Table 2. HLA-Associated Rheumatic Disease |                                                                                               |                                                                                                                                |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| HLA Type                                  | Associated Conditions                                                                         | Comments                                                                                                                       |  |  |  |
| B27                                       | Ankylosing spondylitis<br>Reiter's syndrome<br>Psoriatic arthritis<br>IBD arthropathy (spine) | In AS, relative risk = 70-90<br>In Reiter's, relative risk = 40<br>Psoriatic also associated with B38                          |  |  |  |
| DR4, DR1                                  | Rheumatoid arthritis                                                                          | 93% of patients have HLA type                                                                                                  |  |  |  |
| DR3                                       | Sjögren's syndrome<br>SLE<br>Rheumatoid arthritis                                             | DR3 associated with many non-rheumatic<br>conditions (celiac disease, Type 1 DM, Graves' disease, chronic<br>active hepatitis) |  |  |  |

## Degenerative Vs. Inflammatory

- Both sexes equal.
- Pain through the day
- No morning stiffness.
- Stiffness, less pain.
- Bony swelling.
- No soft tissue swelling
- Uni/Bilateral,

₩



RA

- Females more. Morning stiffness >1h.
- Less with movement.
- Pain & redness
- Inflammation & swelling of soft tissue.
  - Late bone swelling.
  - Bilateral, Symmetrical.

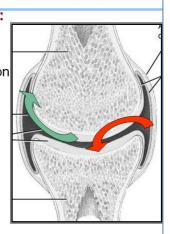


OA

## **Differentiating Features:**

#### **Rheumatoid Arthritis:**

- Young, small joints
- Autoimmune.
- Synovial Inflammation
- synovium  $\rightarrow$ Cartilage


#### **Osteoarthritis:**

- Old, Large joints
- Degenerative.
- Cartilage degeneration.

OA

₩

- Cartilage  $\rightarrow$ 
  - Synovium



# Arthritis Comparison:

RA

Synovial hyperplasia,

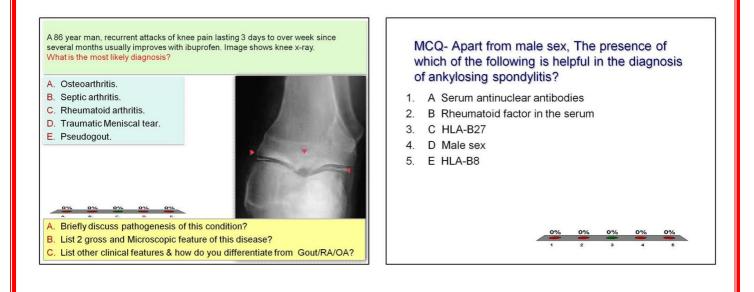
Lymphoplasmacytic

Pannus over cartilage

Subchondral sclerosis

Fibrous /bony ankylosis.

inflammation.


**RH** nodules



| G | วนบ | PS( | eud | oq | ou |
|---|-----|-----|-----|----|----|
|   |     |     |     |    |    |

Crystals + inflammation Gout Tophus - Urate. Pseudo: Ca pyrophospahge





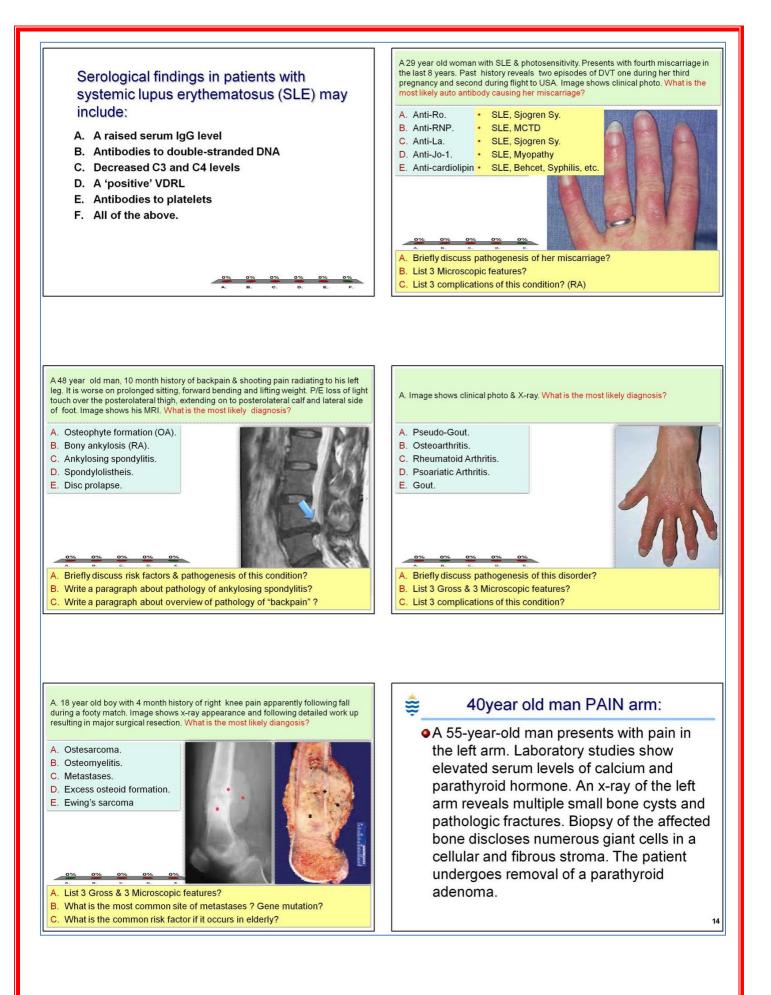
A 67 year woman, 1 day history of severe painful left big toe. No history of trauma, Enjoyed a sumptuous party last nite with her friends. His mild hypertension is well controlled by daily bendroflumethiazide tablet, otherwise well. Examination shows left toe hot, red and tender. Right toe has no pain but slight tenderness on movement. Image shows clinical photo & X-ray. What is the most likely diagnosis?

A. Osteoarthritis.

- B. Septic arthritis.
- C. Rheumatoid arthritis.
- D. Gout.
- E. Pseudogout


<u>% 0% 0% 0%</u>

- A. Briefly discuss pathogenesis of this condition?
- B. What condition has precipitated this attack? List more conditions?
- C. Briefly describe 3 microscopic features of this condition?


## ੇ 🚔

#### 40year old woman arthritis:

A 40-year-old woman complains of morning stiffness in her hands. On physical examination, her finger joints are painful, swollen, and warm. X-ray examination of the hands shows narrowing of the joint spaces and erosion of joint surfaces of the metacarpal/phalangeal joints. The adjacent bones show osteoporosis.



NB: The first slide is Actually Pseudogout, Not Rheumatoid Arthritis



#### W DISCUSSION:

- pa In patients with primary hyperparathyroidism,
- osteoclasts are stimulated to resorb bone. As the fr disease progresses, the trabecular bone is resorbed, and the marrow is replaced by loose fibrosis. Cystic degeneration ultimately occurs, leading to areas of fibrosis that contain reactive woven bone, and
- A. hemosiderin-laden macrophages often display many giant cells, which are actually osteoclasts. Because of its macroscopic appearance, this lesion has been termed a brown tumor. Impaired mineralization of
- C. osteoid (choice B) is a feature of osteomalacia.
   D. Osteoporosis (choice E) is characterized by decreased,
- but otherwise normally mineralized, bone. E. Diagnosis: Hyperparathyroidism, osteitis fibrosa cystica

# MCQ-3 Which of the following statements about rheumatoid arthritis are true?

- 1. Most patients progress to complete disability.
- 2. Oral corticosteroids form the basis of drug therapy.
- 3. Epstein-Barr virus is known to be the causative agent.
- 4. Always responds to plasma exchange therapy.
- 5. Serum C-reactive protein measurement is a useful measure of joint inflammation.

60y Man, history of recurrent arthritis since childhood. Multiple rubbery nodules on his hands (Image). Which of the following explains pathogenesis?

- A. Autoimmune relapsing polychondritis
- B. High dietary intake of purine-rich foods.
- C. Hypercalcemia & chondrocalcinosis
- D. Impaired renal excretion of uric acid
- E. Increased calcium hydroxyapatite deposition.

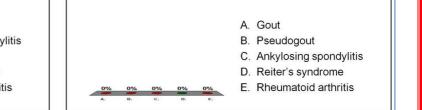


A 23y man, stiffness and pain in his lower back that causes him to awaken at night. He first noticed morning stiffness in his lower back during his college years. He also describes occasional pain in his right eye and sensitivity to light. An x-ray of the sacroiliac region shows fusion of the small joint spaces in the posterior spine and ossification of the intervertebral discs. Serologic tests for RF and antinuclear antibodies are negative. This patient most likely expresses which of the

following human leukocyte antigen (HLA) haplotypes?

|    | A. B15 |
|----|--------|
|    | B. B19 |
|    | C. B27 |
|    | D. B31 |
| 0% | E. B9  |
|    |        |
|    |        |

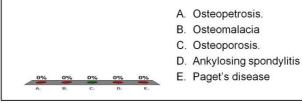
An 85-year-old man presents with a 3-week history of painful swelling of his right knee. Aspiration of joint fluid returns numerous neutrophils and crystals, which are described as rhomboid and "coffin-like." Chemical analysis shows that these crystals are composed of calcium pyrophosphate. Which of the following is the

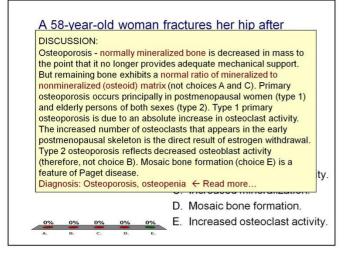

most likely diagnosis?

- A. Pseudogout
- B. Ankylosing spondylitis
- C. Gout
- D. Infectious arthritis



A 28-year-old man complains of burning pain on urination, as well as pain in his fingers and left eye. He also relates a recent episode of bacillary diarrhea contracted during a visit to Mexico. Physical examination confirms arthritis and conjunctivitis. The patient responds well to treatment with NSAIDs. Which of the


following is the most likely diagnosis?




A 10-year-old boy complains of pain in his hands and feet. His temperature is 38°C (101°F). Physical examination reveals a faint pericardial friction rub. His spleen, liver, and axillary lymph nodes are enlarged. Which of the

following is the most likely diagnosis?

A. Rheumatoid arthritis B. Gaucher's disease C. Psoriatic arthritis D. Ankylosing spondylitis E. Juvenile arthritis A 24-year-old man on chronic steroid therapy for severe asthma presents with a 6-month history of increasing hip pain. This patient most likely exhibits symptoms of which of the following metabolic bone diseases?





NB: Hard = Bony = Osteoarthritis Soft = Synovitis = Inflammatory arthritis



# Continue Reading For Bonus Supplementary Study Materials...

# **OR** Orthopedics

| Amedeo Falsetto and Scott Kim, chapter editors<br>Hasaan Chaudhry and Nardin Samuel, associate edit<br>Alex Cressman and Shany Gertzbein, EBM editors<br>Dr. Jeremy A. Hall and Dr. Herbert P. von Schroeder |                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Acronyms                                                                                                                                                                                                     | <b>Hip</b>                                                                                                                     |
| Basic Anatomy Review    2      Differential Diagnosis of Joint Pain    4                                                                                                                                     | Hip Fracture<br>Arthritis of the Hip<br>Hip Dislocation Post-Total Hip Arthroplasty                                            |
| Fractures – General Principles                                                                                                                                                                               | Femur                                                                                                                          |
| General Fracture Complications Articular Cartilage6                                                                                                                                                          | Knee                                                                                                                           |
| Orthopedic X-Ray Imaging                                                                                                                                                                                     | Meniscal Tears<br>Quadriceps/Patellar Tendon Rupture<br>Dislocated Knee                                                        |
| Trauma Patient Workup<br>Open Fractures<br>Cauda Equina Syndrome<br>Compartment Syndrome<br>Osteomyelitis<br>Septic Joint                                                                                    | Patella                                                                                                                        |
| Shoulder                                                                                                                                                                                                     | Tibial Plateau Fracture         Tibial Shaft Fracture         Ankle                                                            |
| Humerus       16         Proximal Humeral Fracture       17         Humeral Shaft Fracture       17         Supracondylar Fracture       17                                                                  | Ligamentous Injuries<br><b>Foot</b>                                                                                            |
| Radial Head Fracture<br>Olecranon Fracture<br>Elbow Dislocation<br>Epicondylitis                                                                                                                             | Plantar Fasciitis (Heel Spur Syndrome)<br>Bunions (Hallux Valgus)<br>Metatarsal Fracture                                       |
| Forearm                                                                                                                                                                                                      | Pediatric Orthopedics                                                                                                          |
| Wrist                                                                                                                                                                                                        | Legg-Calvé-Perthes Disease (Coxa Plana)<br>Osgood-Schlatter Disease<br>Congenital Talipes Equinovarus (Club Foot)<br>Scoliosis |
| Hand PL26                                                                                                                                                                                                    | Bone Tumours                                                                                                                   |
| Spine                                                                                                                                                                                                        | Malignant Bone Tumours      Common Medications      50                                                                         |
| Thoracolumbar Spine     Pelvis     27                                                                                                                                                                        | References 51                                                                                                                  |
| Pelvic Fracture                                                                                                                                                                                              |                                                                                                                                |

Toronto Notes 2016

#### Acronyms/Basic Anatomy Review

#### Toronto Notes 2016

## Acronyms

| AC<br>ACL<br>AIN<br>AP<br>ARDS<br>AVN<br>CA<br>CC<br>CRPS<br>DDH<br>DRUJ<br>DVT<br>EtOH<br>FAI | acromioclavicular<br>anterior cruciate ligament<br>anterior interosseous nerve<br>anterior posterior<br>acute respiratory distress syndrome<br>avascular necrosis<br>coracoacromial<br>coracoclavicular<br>complex regional pain syndrome<br>developmental dysplasia of the hip<br>distal radioulnar joint<br>deep vein thrombosis<br>ethanol/alcohol<br>femoroacetabular impingement | FOOSH<br>GA<br>HO<br>I&D<br>IM<br>LCL<br>MCL<br>MT<br>MTP<br>MVC<br>NVS<br>NWB<br>OA | fall on outstretched hand<br>general anesthetic<br>heterotopic ossification<br>incision and drainage<br>intramedullary<br>lateral collateral ligament<br>metalarsal<br>metatarsophalangeal<br>motor vehicle collision<br>neurovascular status<br>non-weight bearing<br>osteoarthritis | ORIF<br>PCL<br>PIN<br>RA<br>ROM<br>RSD<br>SCFE<br>SLAP<br>SN<br>THA<br>WB<br># | open reduction internal fixation<br>posterior cruciate ligament<br>pulmonary embolism<br>posterior interosseous nerve<br>rheumatoid arthritis<br>range of motion<br>reflex sympathetic dystrophy<br>slipped capital femoral epiphysis<br>superior lateral, anterior posterior<br>sensitivity<br>total hip arthroplasty<br>weight bearing<br>fracture |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **Basic Anatomy Review**

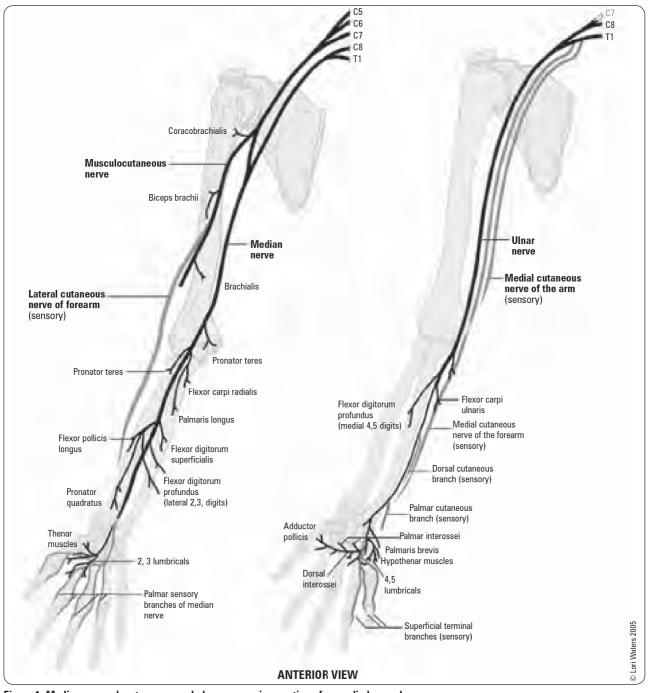



Figure 1. Median, musculocutaneous, and ulnar nerves: innervation of upper limb muscles

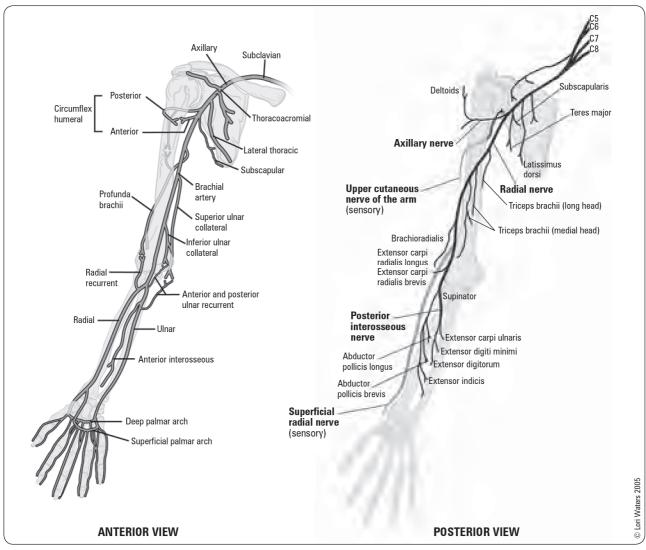



Figure 2. (Left) Blood supply to the upper limb, (Right) Axillary and radial nerves: innervation of the upper limb

| Nerve                | Motor                                                        | Sensory                                                                                | Nerve Roots    |
|----------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|
| Axillary             | Deltoid/Teres Minor                                          | Lateral Upper Arm (Sergeant's Patch)                                                   | C5, C6         |
| Musculocutaneous     | Biceps/Brachialis                                            | Lateral Forearm                                                                        | C5, C6         |
| Radial               | Triceps<br>Wrist/Thumb/Finger Extensors                      | Lateral Dorsum of the Hand<br>Medial Upper Forearm                                     | C5, C6, C7, C8 |
| Median               | Wrist Flexors and Abductors<br>Flexion of the 1st-3rd Digits | Volar Thumb to Radial half of 4th Digit                                                | C6, C7         |
| Ulnar                | Wrist Flexors and Adductors<br>Flexion of the 4th-5th Digits | Medial Forearm<br>Medial Dorsum and Volar of Hand<br>(Ulnar half of 4th and 5th Digit) | C8, T1         |
| Tibial               | Ankle Plantar Flexion<br>Knee Flexion<br>Great Toe Flexion   | Sole of Foot                                                                           | L5, S1         |
| Superficial Peroneal | Ankle Eversion                                               | Dorsum of Foot                                                                         | L5, S1         |
| Deep Peroneal        | Ankle Dorsiflexion and Inversion<br>Great Toe Extension      | 1st Web Space                                                                          | L5, S1         |
| Sural                |                                                              | Lateral Foot                                                                           | S1, S2         |
| Saphenous            |                                                              | Anteromedial Ankle                                                                     | L3, L4         |

| Table 1 Sensory | y and Motor Innervation   | on of the Nerves | in the Unner a | nd Lower Extremities |
|-----------------|---------------------------|------------------|----------------|----------------------|
|                 | y and motor milliorvation |                  | in the opper a |                      |

#### **OR4** Orthopedics

#### Basic Anatomy Review/Fractures - General Principles

Toronto Notes 2016

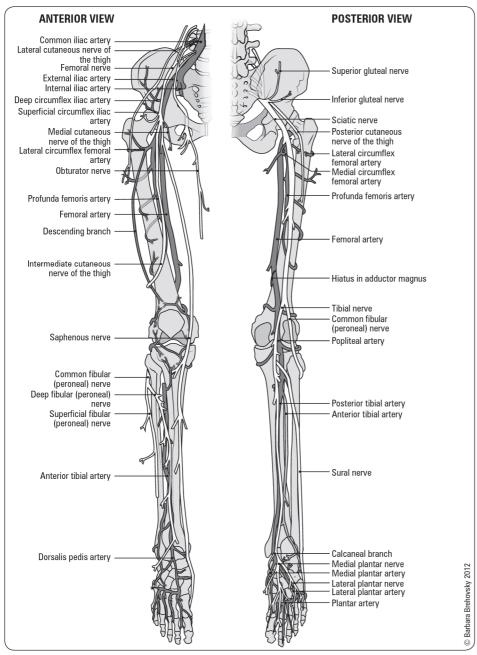



Figure 3. Nerves and arteries of lower limbs

# Fractures – General Principles

## **~**

## **Fracture Description**

#### 1. Name of Injured Bone

#### 2. Integrity of Skin/Soft Tissue

- closed: skin/soft tissue over and near fracture is intact
- open: skin/soft tissue over and near fracture is lacerated or abraded, fracture exposed to outside environment
  - signs: continuous bleeding from puncture site or fat droplets in blood are suggestive of an open fracture

## **OR5** Orthopedics

### 3. Location

- epiphyseal: end of bone, forming part of the adjacent joint
- metaphyseal: the flared portion of the bone at the ends of the shaft
- diaphyseal: the shaft of a long bone (proximal, middle, distal)
- physis: growth plate

## 4. Orientation/Fracture Pattern

- transverse: fracture line perpendicular to long axis of bone; result of direct high energy force
- oblique: angular fracture line; result of angular or rotational force
- butterfly: fracture site fragment which looks like a butterfly
- segmental: a separate segment of bone bordered by fracture lines; result of high energy force
- spiral: complex, multi-planar fracture line; result of rotational force, low energy
- comminuted/multi-fragmentary: >2 fracture fragments
- intra-articular: fracture line crosses articular cartilage and enters joint
- avulsion: tendon or ligament tears/pulls off bone fragment; often in children, high energy
- compression/impacted: impaction of bone; typical sites are vertebrae or proximal tibia
- torus: a buckle fracture of one cortex, often in children (see Figure 51, OR42)
- greenstick: an incomplete fracture of one cortex, often in children (see Figure 51, OR42)
- pathologic: fracture through bone weakened by disease/tumour

### 5. Alignment of Fracture Fragments

- nondisplaced: fracture fragments are in anatomic alignment
- displaced: fracture fragments are not in anatomic alignment
- distracted: fracture fragments are separated by a gap (opposite of impacted)
- impacted: fracture fragments are compressed, resulting in shortened bone
- angulated: direction of fracture apex (e.g. varus/valgus)
- translated/shifted: percentage of overlapping bone at fracture site
- rotated: fracture fragment rotated about long axis of bone

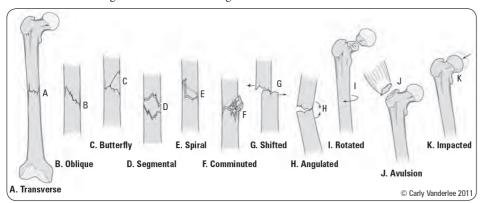
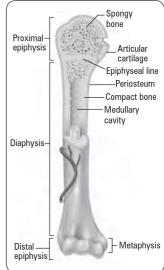



Figure 4. Fracture types

# **Approach to Fractures**

### 1. Clinical Assessment


- ABCs, primary survey and secondary survey (ATLS protocol)
  - rule out other fractures/injuries
  - rule out open fracture
- AMPLE history (minimum): Allergies, Medications, Past medical history, Last meal, Events surrounding injury
  - mechanism of injury
  - previous significant injury or surgery to affected area
  - consider pathologic fracture with history of only minor trauma
- physical exam: look (deformity, soft tissue integrity); feel (maximal tenderness, NVS-document best possible neurovascular exam, avoid ROM/moving injured area to prevent exacerbation)
- 2. Analgesia
- 3. Imaging (see Orthopedic X-Ray Imaging, OR7)
- 4. Splint Extremity
- 5. Management: Closed vs. Open Reduction
- 1. obtain the reduction (for appropriate IV sedation see Table 27, OR50)
  - closed reduction
    - apply traction in the long axis of the limb
    - reverse the mechanism that produced the fracture
    - reduce with IV sedation and muscle relaxation (fluoroscopy can be used if available)



**Displacement** Refers to position of the distal fragment relative to the proximal fragment



Quick Motor Nerve Exam "Thumbs Up": PIN (Radial Nerve) "OK Sign": AIN (Median Nerve) "Spread Fingers": Ulnar Nerve



# Figure 5. Schematic diagram of the long bone



X-Ray Rule of 2s 2 sides = bilateral 2 views = AP + lateral 2 joints = joint above + below

2 times = before + after reduction



- Reasons for Splinting

  Pain control
- Reduces further damage to vessels, nerves, and skin and may improve vascular status
- Decreases risk of inadvertently
- converting closed to open fracture
- Facilitates patient transport

# **OR6** Orthopedics

## Fractures - General Principles/Articular Cartilage

### Toronto Notes 2016

- indications for open reduction
  - "NO CAST"
  - other indications include
    - failed closed reduction
    - not able to cast or apply traction due to site (e.g. hip fracture)
  - pathologic fractures
    - potential for improved function with ORIF
- ALWAYS re-check and document NVS after reduction and obtain post-reduction x-ray 2. maintain the reduction
  - external stabilization: splints, casts, traction, external fixator
  - internal stabilization: percutaneous pinning, extramedullary fixation (screws, plates, wires),
  - IM fixation (rods)
- follow-up: evaluate bone healing
- 3. rehabilitate to regain function and avoid joint stiffness

# **Fracture Healing**

### **Normal Healing**

| Weeks 0-3   |   | Hematoma, macrophages surround fracture site                 |
|-------------|---|--------------------------------------------------------------|
| Weeks 3-6   |   | Osteoclasts remove sharp edges, callus forms within hematoma |
| Weeks 6-12  |   | Bone forms within the callus, bridging fragments             |
| Months 6-12 |   | Cortical gap is bridged by bone                              |
| Years 1-2   | 7 | Normal architecture is achieved through remodelling          |

### Figure 7. Stages of bone healing

# **Evaluation of Healing: Tests of Union**

- clinical: no longer tender to palpation or stressing on physical exam
- x-ray: trabeculae cross fracture site, visible callus bridging site on at least 3 of 4 cortices

# **General Fracture Complications**

### **Table 2. General Fracture Complications**

|          | Early                                                                                                               | Late                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Local    | Compartment syndrome<br>Neurological injury<br>Vascular injury<br>Infection<br>Implant failure<br>Fracture blisters | Mal-/non-union<br>AVN<br>Osteomyelitis<br>HO<br>Post-traumatic OA<br>Joint stiffness/adhesive capsulitis<br>CRPS type I/RSD |
| Systemic | Sepsis<br>DVT<br>PE<br>ARDS secondary to fat embolism<br>Hemorrhagic shock                                          |                                                                                                                             |

# **Articular Cartilage**

### Properties

- 2-4 mm layer covering ends of articulating bones, provides nearly frictionless surface
- avascular (nutrition from synovial fluid), aneural, alymphatic
- composed of: collagen (90% is type II; gives tensile strength), water, proteoglycans (gives compressive strength), and chondrocytes

# **ARTICULAR CARTILAGE DEFECTS**

# Etiology

- overt trauma, repetitive minor trauma (such as repetitive ankle sprains or patellar maltracking); common sports injury
- degenerative conditions such as early stage OA or osteochondritis dissecans



Indications for Open Reduction NO CAST Non-union Open fracture Neurovascular Compromise Displaced intra-Articular fracture Salter-Harris 3,4,5 PolyTrauma



Figure 6. Heterotopic ossification of femoral diaphysis after femur fracture and IM nailing





Bone remodels itself to over time in response to mechanical load to better withstand loading stressors placed upon it



**Heterotopic Ossification** The formation of bone in abnormal locations (e.g. in muscle), secondary to pathology



## Avascular Necrosis Ischemia of bone due to disrupted blood supply; commonly in bones covered





Fracture Blister Formation of vesicles or bullae that occur on edematous skin overlying a fractured bone

## Articular Cartilage/Orthopedic X-Ray Imaging

## **OR7** Orthopedics

### **Clinical Features**

- similar to symptoms of OA (joint line pain with possible effusion, etc.)
- often have predisposing factors, such as ligament injury, malalignment of the joint (varus/ valgus), obesity, bone deficiency (AVN, osteochondritis dissecans, ganglion bone cysts), inflammatory arthropathy, and familial osteoarthropathy
- may have symptoms of locking or catching related to the torn/displaced cartilage

### Investigations

- x-ray (to rule out bony defects and check alignment)
- MRI
- diagnostic arthroscopy (treatment is often guided by what is seen during arthroscopy)

## Table 3. Outerbridge Classification of Chondral Defects

| Grade                                                                                                            | Chondral Damage                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
| Ι                                                                                                                | Softening and swelling of cartilage               |  |  |  |
| Ш                                                                                                                | Fragmentation and fissuring $< 1/2$ " in diameter |  |  |  |
| III         Fragmentation and fissuring >1/2" in diameter           IV         Erosion of cartilage down to bone |                                                   |  |  |  |
|                                                                                                                  |                                                   |  |  |  |

# Treatment

- individualized
  - patient factors (age, skeletal maturity, activity level, etc.)
  - defect factors (Outerbridge Classification, subchondral bone involvement, etc.)
- non-operative
- rest, NSAIDs, bracing
- operative
  - microfracture, osteochondral grafting (autograft or allograft), autologous chondrocyte implantation

# **Orthopedic X-Ray Imaging**

## **General Principles**

- x-ray 1 joint above and 1 below
- obtain at least 2 orthogonal views ± specialized views

## Table 4. Orthopedic X-Ray Imaging

| Site          | Injury                                                                         | X-Ray Views                                                                                           |
|---------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Shoulder      | Anterior dislocation<br>Posterior dislocation<br>AC<br>Frozen shoulder         | AP<br>Axillary ± stress view with 10 lb in hand<br>Trans-scapular<br>Zanca view (10-15 cephalic tilt) |
| Arm           | Humerus #                                                                      | AP<br>Lateral<br>Trans-scapular<br>Axillary                                                           |
| Elbow/Forearm | Supracondylar #<br>Radial head #<br>Monteggia #<br>Night stick #<br>Galeazzi # | AP<br>Lateral                                                                                         |
| Wrist         | Colles' #<br>Smith #<br>Scaphoid #                                             | AP<br>Lateral<br>Scaphoid (wrist extension and ulnar deviation x 2 wk)                                |
| Pelvis        | Pelvic #                                                                       | AP pelvis<br>Inlet and outlet views<br>Judet views (obturator and iliac oblique for acetabular #)     |
| Нір           | Fernoral head/neck #<br>Intertrochanteric #<br>Arthritis<br>SCFE<br>FAI        | AP<br>Lateral<br>Frog-leg lateral<br>Dunn                                                             |



Varus/Valgus Angulation Varus = Apex away from midline Valgus = Apex toward midline



# **CRPS/RSD**

An exaggerated response to an insult in the extremities; characterized by symptoms of hyperalgesia and allodynia, with signs of autonomic dysfunction (temperature asymmetry, mottling, hair or nail changes)



Toronto Notes 2016

### **OR8** Orthopedics

### **Orthopedic X-Ray Imaging/Orthopedic Emergencies**

Toronto Notes 2016

| Site  | Injury                                                                                                             | X-Ray Views                                                                                                                                                                                                                                    |
|-------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knee  | Knee dislocation<br>Femur/tibia #<br>Patella #<br>Patella dislocation<br>Patella femoral syndrome<br>Tibia shaft # | AP standing, lateral Skyline – tangential view with knees flexed at $45^\circ$ to see patellofernoral joint                                                                                                                                    |
| Ankle | Ankle #                                                                                                            | AP<br>Lateral<br>Mortise view: ankle at 15° of internal rotation                                                                                                                                                                               |
| Foot  | Talar #<br>Calcanial #                                                                                             | AP<br>Lateral Harris Axial                                                                                                                                                                                                                     |
| Spine | Compression #<br>Burst #<br>Cervical spine #                                                                       | AP spine<br>AP odontoid<br>Lateral<br>Oblique<br>Swimmer's view: lateral view with arm abducted 180° to evaluate C7-T1<br>junction if lateral view is inadequate<br>Lateral flexion/extension view: evaluate subluxation of cervical vertebrae |

### Table 4. Orthopedic X-Ray Imaging (continued)

# **Orthopedic Emergencies**

# **Trauma Patient Workup**

### Etiology

- high energy trauma e.g. MVC, fall from height
- may be associated with spinal injuries or life-threatening visceral injuries

### **Clinical Features**

- local swelling, tenderness, deformity of the limbs, and instability of the pelvis or spine
- · decreased level of consciousness, hypotension/hypovolemia
- consider involvement of EtOH or other substances

### Investigations

- trauma survey (see Emergency Medicine, ER2, ER15)
- x-rays: lateral cervical spine, AP chest, AP pelvis, AP and lateral of all bones suspected to be injured
- other views of pelvis: AP, inlet, and outlet; Judet views for acetabular fracture (for classification of pelvic fractures see Table 18, OR28)

### Treatment

- ABCDEs and initiate resuscitation for life threatening injuries
- assess genitourinary injury (rectal exam/vaginal exam mandatory)
- external or internal fixation of all fractures
- DVT prophylaxis

### Complications

- **hemorrhage life threatening** (may produce signs and symptoms of hypovolemic shock)
- fat embolism syndrome (SOB, hypoxemia, petechial rash, thrombocytopenia, and neurological
- symptoms)
- venous thrombosis DVT and PE
- bladder/urethral/bowel injury
- neurological damage
- persistent pain/stiffness/limp/weakness in affected extremities
- post-traumatic OA of joints with intra-articular fractures
- sepsis if missed open fracture

# **Open Fractures**

• fractured bone and hematoma in communication with the external environment

## **Emergency Measures**

- ABCs, primary survey and resuscitation as needed
- removal of obvious foreign material
- irrigate with normal saline if grossly contaminated



A system of weights, pulleys, and ropes that are attached to the end of a patient's bed exerting a longitudinal force on the distal end of a fracture, improving its length, alignment, and rotation



Orthopedic Emergencies

VON CHOP Vascular compromise Open fracture Neurological compromise/cauda equina syndrome Compartment syndrome Hip dislocation Osteomyelitis/septic arthritis Unstable Pelvic fracture





Antibiotics for Preventing Infection in Open Limb Fractures Cochrane DB Syst Rev 2004;1:CD003764

**Purpose:** To review the evidence regarding the effectiveness of antibiotics in the initial treatment of open fractures of the limbs.

Methods: Randomized or quasi randomized controlled trials comparing antibiotic treatment with placebo or no treatment in preventing acute wound infection were identified and reviewed. Data were extracted and pooled for analysis.

Results: Eight studies (n=1,106) were reviewed. The use of antibiotics had a protective effect against early infection compared with no antibiotics or placebo (RRR=0.43, 95% CI 0.29, 0.65; ARR=0.07,

95% CI 0.03=0.10). Conclusions: Antibiotics reduce the incidence of

early infections in open fractures of the limbs.



33% of patients with open fractures have multiple injuries

### **OR9** Orthopedics

### **Orthopedic Emergencies**

### Toronto Notes 2016

- cover wound with sterile dressings
- immediate IV antibiotics
- tetanus toxoid or immunoglobulin as needed
- reduce and splint fracture
- NPO and prepare for OR (blood work, consent, ECG, CXR)
  - operative irrigation and debridement within 6-8 h to decrease risk of infection
  - traumatic wound often left open to drain but vacuum-assisted closure dressing may be used
    re-examine with repeat irrigation and debridement in 48 h

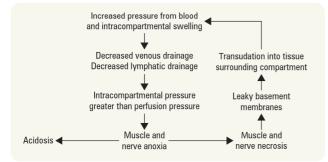
### **Table 5. Gustilo Classification of Open Fractures**

| Gustilo<br>Grade | Length of<br>Open Wound | Description                                                                                                                                                                                                                                                  | Prophylactic Antibiotic Regimen                                                                                                                                                            |
|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I                | <1 cm                   | Minimal contamination and soft tissue injury<br>Simple or minimally comminuted fracture                                                                                                                                                                      | First generation cephalosporin (cefazolin) for 3 d<br>If allergy use floroquinolone<br>If MRSA positive use vancomycin                                                                     |
| II               | 1-10 cm                 | Moderate contamination<br>Moderate soft tissue injury                                                                                                                                                                                                        | As per Grade I                                                                                                                                                                             |
| III*             | >10 cm                  | IIIA: Extensive soft tissue injury with adequate<br>ability of soft tissue to cover wound<br>IIIB: Extensive soft tissue injury with<br>periosteal stripping and bone exposure;<br>inadequate soft tissue to cover wound<br>IIIC: Vascular injury/compromise | First generation cephalosporin (cefazolin) for 3 d plus<br>Gram-negative coverage (gentamicin) for at least 3 d<br>For soil contamination, penicillin is added for<br>clostridial coverage |

\*Any high energy, comminuted fracture, shot gun, farmyard/soil/water contamination, exposure to oral flora, or fracture >8 h old is immediately classified as Grade III

# **Cauda Equina Syndrome**

## • see Neurosurgery, NS26


# **Compartment Syndrome**

### Definition

- increased interstitial pressure in an anatomical compartment (forearm, calf) where muscle and tissue are bounded by fascia and bone (fibro-osseous compartment) with little room for expansion
- interstitial pressure exceeds capillary perfusion pressure leading to muscle necrosis (in 4-6 h) and eventually nerve necrosis

### Etiology

- intracompartmental: fracture (particularly tibial shaft fractures, pediatric supracondylar fractures, and forearm fractures), reperfusion injury, crush injury, ischemia
- extracompartmental: constrictive dressing (circumferential cast, poor positioning during surgery), circumferential burn



### Figure 8. Pathogenesis of compartment syndrome

### **Clinical Features**

- pain out of proportion to injury (typically first symptom)
- pain with active contraction of compartment
- pain with passive stretch (most sensitive)
- swollen, tense compartment
- suspicious history
- 5 Ps: late sign do not wait for these to develop to make the diagnosis!



Cauda equina syndrome is a surgical emergency



### 5 Ps of Compartment Syndrome

Pain: out of proportion for injury and not relieved by analgesics • Increased pain with passive stretch of compartment muscles Pallor: late finding Paralysis: late finding Pulselessness: late finding



Most important sign is increased pain with passive stretch. Most important symptom is pain out of proportion to injury



### Controversies in Initial Management of Open Fractures

Scand J Surg 2014;103(2):132-137 Study: Literature review examining the initial management of open fractures. 40 studies included. Findings:

- A first generation cephalosporin (or clindamycin) should be administered upon arrival. In general, 24 h of antibiotics after each debridement is sufficient to reduce infection rates.
- Although cultures are taken from delayed (>24 h) or infected injuries, it may not be necessary to routinely take post-debridement cultures in open fractures.
- Open fractures should be debrided as soon as possible although the "6-hr rule" is not generally valid.
- Wounds should be closed within 7 d once soft tissue has stabilized and all non-viable tissue removed.
- Negative pressure wound therapy (NPWT) has been shown to decrease infection rates in open fractures.

## **OR10** Orthopedics

### **Orthopedic Emergencies**

### Investigations

- usually not necessary as compartment syndrome is a clinical diagnosis
- in children or unconscious patients where clinical exam is unreliable, compartment pressure monitoring with catheter AFTER clinical diagnosis is made (normal = 0 mmHg; elevated  $\geq$  30 mmHg or [measured pressure – dBP]  $\leq$  30 mmHg)

## Treatment

- non-operative
  - remove constrictive dressings (casts, splints), elevate limb at the level of the heart
- operative
  - urgent fasciotomy
  - 48-72 h post-operative: wound closure ± necrotic tissue debridement

### Complications

- Volkmann's ischemic contracture: ischemic necrosis of muscle, followed by secondary fibrosis and finally calcification; especially following supracondylar fracture of humerus
- · rhabdomyolysis, renal failure secondary to myoglobinuria

# Osteomyelitis

· bone infection with progressive inflammatory destruction

### Etiology

- most commonly caused by Staphylococcus aureus
- mechanism of spread: hematogenous (most common) vs. direct-inoculation vs. contiguous focus
- risk factors: recent trauma/surgery, immunocompromised patients, DM, IV drug use, poor vascular supply, peripheral neuropathy

### **Clinical Features**

- symptoms: pain and fever
- on exam: erythema, tenderness, edema common ± abscess/draining sinus tract; impaired function/WB

### Diagnosis

- see Medical Imaging, MI24
- workup includes: WBC and diff, ESR, CRP, blood culture, aspirate culture/bone biopsy

### Table 6. Treatment of Osteomyelitis

### Acute Osteomyelitis

IV antibiotics 4-6 wk; started empirically and adjusted after obtaining blood and aspirate cultures ± surgery (I&D) for abscess or significant involvement

# **Chronic Osteomyelitis**

Surgical debridement Antibiotics: both local (e.g. antibiotic beads) and systemic (IV)

± hardware removal (if present)

# Septic Joint

- joint infection with progressive destruction if left untreated
- risk factors: young/elderly (age >80 yr), RA, prosthetic joint, recent joint surgery, skin infection/ ulcer, IV drug use, previous intra-articular corticosteroid injection, immune compromise (cancer, DM, alcoholism)

## Etiology

- most commonly caused by Staphylococcus aureus in adults
- consider coagulase-negative Staphylococcus in patients with prior joint replacement
- consider Neisseria gonorrhoeae in sexually active adults and newborns
- most common route of infection is hematogenous

### **Clinical Features**

• inability/refusal to bear weight, localized joint pain, erythema, warmth, swelling, pain on active and passive ROM, ± fever

### Investigations

- x-ray (to rule out fracture, tumour, metabolic bone disease), ESR, CRP, WBC, blood cultures
- joint aspirate: cloudy yellow fluid, WBC >50,000 with >90% neutrophils, protein level >4.4 mg/
- dL, joint glucose level < 60% blood glucose level, no crystals, positive Gram stain results
- listen for heart murmur (to reduce suspicion of infective endocarditis, use Duke Criteria)

Rapid progression of signs and symptoms (over hours) necessitates need for serial examinations



## **Plain Film Findings of Osteomyelitis**

- · Soft tissue swelling Lytic bone destruction\*
- · Periosteal reaction (formation of new bone, especially in response to #)\*

\*Generally not seen on plain films until 10-12 d after onset of infection





Acute osteomyelitis is a medical emergency which requires an early diagnosis and appropriate antimicrobial and surgical treatment



Most commonly affected joints in descending order knee  $\rightarrow$  hip  $\rightarrow$  elbow  $\rightarrow$  ankle $\rightarrow$ sternoclavicular joint



Plain Film Findings in a Septic Joint · Early (0-3 d): usually normal; may

- show soft-tissue swelling or joint space widening from localized edema
- · Late (4-6 d): joint space narrowing and destruction of cartilage



Serial C-reactive protein (CRP) can be used to monitor response to therapy

### **OR11** Orthopedics

### **Orthopedic Emergencies/Shoulder**

### Toronto Notes 2016

### Treatment

- IV antibiotics, empiric therapy (based on age and risk factors), adjust following joint aspirate C&S results
- non-operative
- therapeutic joint aspiration, serially if necessary (if early diagnosis and joint superficial) operative
  - arthroscopic/open irrigation and irrigation and drainage ± decompression

# Shoulder

# **Shoulder Dislocation**

• complete separation of the glenohumeral joint; may be anterior or posterior

### Investigations

- anterior dislocation x-rays (AP, trans-scapular, axillary views)
- posterior dislocation x-rays (AP, trans-scapular, axillary) or CT scan

 $\pm$  bony Bankart lesion: avulsion of the anterior glenoid labrum (with attached bone fragments) from the glenoid rim (see Figure 12)

### **Table 7. Anterior and Posterior Shoulder Dislocation**

|                                           | Anterior Shoulder Dislocation (>90%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Posterior Shoulder Dislocation (5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MECHANISM                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           | Abducted arm is externally rotated/hyperextended, or blow to posterior shoulder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Adducted, internally rotated, flexed arm F00SH                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | Involuntary, usually traumatic; voluntary, atraumatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 Es (epileptic seizure, Et0H, electrocution)<br>Blow to anterior shoulder                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLINICAL FEATURI                          | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Symptoms                                  | Pain, arm slightly abducted and externally rotated with inability to internally rotate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pain, arm is held in adduction and internal rotation;<br>external rotation is blocked                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shoulder Exam                             | "Squared off" shoulder<br>Positive apprehension test: patient looks<br>apprehensive with gentle shoulder abduction and<br>external rotation to 90° since humeral head is<br>pushed anteriorly and recreates feeling of anterior<br>dislocation (see Figure 13)<br>Positive relocation test: a posteriorly directed<br>force applied during the apprehension test<br>relieves apprehension since anterior subluxation is<br>prevented<br>Positive sulcus sign: presence of subacromial<br>indentation with distal traction on humerus<br>indicates inferior shoulder instability (see Figure 13) | Anterior shoulder flattening, prominent coracoid,<br>palpable mass posterior to shoulder<br>Positive posterior apprehension ("jerk") test: with<br>patient supine, flex elbow 90° and adduct, internally<br>rotate the arm while applying a posterior force<br>to the shoulder; patient will "jerk" back with the<br>sensation of subluxation (see Figure 13)<br>Note: the posterior apprehension test is used to<br>test for recurrent posterior instability, NOT for acute<br>injury |
| Neurovascular<br>Exam Including           | Axillary nerve: sensory patch over deltoid and<br>deltoid contraction<br>Musculocutaneous nerve: sensory patch on lateral<br>forearm and biceps contraction                                                                                                                                                                                                                                                                                                                                                                                                                                     | Full neurovascular exam as per anterior shoulder dislocation                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RADIOGRAPHIC FI                           | NDINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Axillary View                             | Humeral head is anterior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Humeral head is posterior                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Trans-scapular 'Y'<br>View                | Humeral head is anterior to the centre of the<br>"Mercedes-Benz" sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Humeral head is posterior to centre of "Mercedes-<br>Benz" sign                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AP View                                   | Sub-coracoid lie of the humeral head is most common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Partial vacancy of glenoid fossa (vacant glenoid<br>sign) and >6 mm space between anterior glenoid<br>rim and humeral head (positive rim sign), humeral<br>head may resemble a lightbulb due to internal<br>rotation (lightbulb sign)                                                                                                                                                                                                                                                  |
| Hill-Sachs and<br>Bony Bankart<br>Lesions | ± Hill-Sachs lesion: compression fracture of<br>posterior humeral head due to forceful impaction of<br>an anteriorly dislocated humeral head against the<br>glenoid rim (see Figure 12)                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>± reverse Hill-Sachs lesion (75% of cases): divot in<br/>anterior humeral head</li> <li>± reverse bony Bankart lesion: avulsion of the<br/>posterior glenoid labrum from the bony glenoid rim</li> </ul>                                                                                                                                                                                                                                                                      |



Posterior Shoulder Dislocation Up to 60-80% are missed on initial presentation due to poor physical exam and radiographs



There are 4 Joints in the Shoulder glenohumeral, AC, sternoclavicular (SC), scapulothoracic

Shoulder passive ROM: abduction - $180^\circ\text{, adduction}-45^\circ\text{, flexion}-180^\circ\text{,}$ extension  $-\,45^\circ\!,$  int. rotation  $-\,$  level of T4, ext. rotation –  $40-45^{\circ}$ 

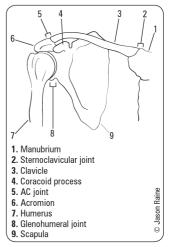



Figure 9. Shoulder joints

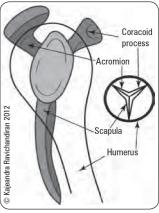



Figure 10. Mercedes-Benz

### **OR12** Orthopedics

Shoulder

### Toronto Notes 2016

| Table 7. Anterior and Posteric | or Shoulder Dislocation | (continued) |
|--------------------------------|-------------------------|-------------|
|--------------------------------|-------------------------|-------------|


|           | Anterior Shoulder Dislocation (>90%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Posterior Shoulder Dislocation (5%)                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TREATMENT | Closed reduction with IV sedation and muscle<br>relaxation<br>Traction-countertraction: assistant stabilizes torso<br>with a folded sheet wrapped across the chest while<br>the surgeon applies gentle steady traction<br>Stimson: while patient lies prone with arm hanging<br>over table edge, hang a 5 lb weight on wrist for<br>15-20 min<br>Hippocratic method: place heel into patient's axilla<br>and apply traction to arm<br>Cunningham's method: low risk, low pain; if not<br>successful try above methods<br>Obtain post-reduction x-rays<br>Check post-reduction NVS<br>Sling x 3 wk (avoid abduction and external<br>rotation), followed by shoulder rehabilitation<br>(dynamic stabilizer strengthening) | Closed reduction with sedation and muscle<br>relaxation<br>Inferior traction on a flexed elbow with pressure on<br>the back of the humeral head<br>Obtain post-reduction x-rays<br>Check post-reduction NVS<br>Sling in abduction and external rotation x 3 wk,<br>followed by shoulder rehabilitation (dynamic<br>stabilizer strengthening) | <ul> <li>Factors Causing Shoulder Instability</li> <li>Shallow glenoid</li> <li>Loose capsule</li> <li>Ligamentous laxity</li> <li>Frequency of Dislocations</li> <li>Anterior shoulder &gt; Posterior shoulder</li> <li>Posterior hip &gt; Anterior hip</li> <li>The glenohumeral joint is the most commonly dislocated joint in the body since stability is sacrificed for motion</li> </ul> |

## Prognosis

- recurrence rate depends on age of first dislocation
- <20 yr = 65-95%; 20-40 yr = 60-70%; >40 yr = 2-4%

### **Specific Complications**

- rotator cuff or capsular or labral tear (Bankart/SLAP lesion), shoulder stiffness
  injury to axillary nerve/artery, brachial plexus
- recurrent/unreduced dislocation (most common complication)









**Traction-Countertraction** 

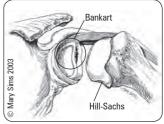



Figure 11. Posterior view of anterior dislocation causing **Hill-Sachs and Bankart lesions** 

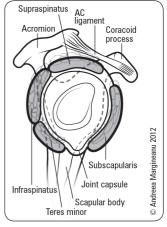



Figure 13. Muscles of the rotator cuff

Figure 12. Shoulder maneuvers

# **Rotator Cuff Disease**

• rotator cuff consists of 4 muscles that act to stabilize humeral head within the glenoid fossa

### **Table 8. Rotator Cuff Muscles**

| Muscle        | Muscle Attachments |                               | Nerve Supply        | Muscle Function                 |
|---------------|--------------------|-------------------------------|---------------------|---------------------------------|
|               | Proximal           | Distal                        |                     |                                 |
| Supraspinatus | Scapula            | Greater tuberosity of humerus | Suprascapular nerve | Abduction                       |
| Infraspinatus | Scapula            | Greater tuberosity of humerus | Suprascapular nerve | External rotation               |
| Teres Minor   | Scapula            | Greater tuberosity of humerus | Axillary nerve      | External rotation               |
| Subscapularis | Scapula            | Lesser tuberosity of humerus  | Subscapular nerve   | Internal rotation and adduction |

### Shoulder

Toronto Notes 2016

# SPECTRUM OF DISEASE: IMPINGEMENT, TENDONITIS, MICRO OR MACRO TEARS

### Etiology

- outlet/subacromial impingement: "painful arc syndrome", compression of rotator cuff tendons (primarily supraspinatus) and subacromial bursa between the head of the humerus and the undersurface of acromion, AC joint, and CA ligament
  - leads to bursitis, tendonitis, and if left untreated, can lead to rotator cuff thinning and tear anything that leads to a narrow subacromial space
  - glenohumeral muscle weakness leading to abnormal motion of humeral head
  - scapular muscle weakness leading to abnormal motion of acromion
  - acromial abnormalities such as congenital narrow space or osteophyte formation or Type III acromion morphology

### **Clinical Features**

- insidious onset, but may present as an acute exacerbation of chronic disease, night pain and difficulty sleeping on affected side
- pain worse with active motion (especially overhead); passive movement generally permitted
- weakness and loss of ROM especially between 90°-130° (e.g. trouble with overhead activities)
- tenderness to palpation over greater tuberosity
- rule out bicep tendinosis: Speed and Yergason's tests; SLAP lesion: O'Brien's test

### Investigations

- x-ray: AP view may show high riding humerus relative to glenoid indicating large tear, evidence of chronic tendonitis
- MRI: coronal/sagittal oblique and axial orientations are useful for assessing full/partial tears and tendinopathy ± arthrogram: geyser sign (injected dye leaks out of joint through rotator cuff tear)
- arthrogram: can assess full thickness tears, difficult to assess partial tears

## Treatment

- non-operative
  - physiotherapy, NSAIDs ± steroid injection
  - for mild ("wear") or moderate ("tear") cases
- operative
  - indication: severe ("repair")
  - impingement that is refractory to 2-3 mo physiotherapy and 1-2 corticosteroid injections
    arthroscopic or open surgical repair (ie. acromioplasty, rotator cuff repair)

### **Table 9. Rotator Cuff Special Tests**

|                          | -                                                                                                                                                                                                                   |                                                                              |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Test                     | Examination                                                                                                                                                                                                         | Positive Test                                                                |
| Jobe's Test              | Supraspinatus: place the shoulder in 90° of abduction and 30° of<br>forward flexion and internally rotate the arm so that the thumb is<br>pointing toward the floor                                                 | Weakness with active resistance suggests a supraspinatus tear                |
| Lift-off Test            | Subscapularis: internally rotate arm so dorsal surface of hand rests<br>on lower back; patient instructed to actively lift hand away from<br>back against examiner resistance (use Belly Press Test if too painful) | Inability to actively lift hand away from back suggests a subscapularis tear |
| Posterior-Cuff<br>Test   | Infraspinatus and teres minor: arm positioned at patient's side in<br>90° of flexion; patient instructed to externally rotate arm against the<br>resistance of the examiner                                         | Weakness with active resistance suggests posterior cuff tear                 |
| Neer's Test              | Rotator cuff impingement: passive shoulder flexion                                                                                                                                                                  | Pain elicited between 130-170° suggests impingement                          |
| Hawkins-<br>Kennedy Test | Rotator cuff impingement: shoulder flexion to $90^{\circ}$ and passive internal rotation                                                                                                                            | Pain with internal rotation suggests impingement                             |
| Painful Arc<br>Test      | Rotator cuff tendinopathy: patient instructed to actively abduct the shoulder                                                                                                                                       | Pain with abduction >90°<br>suggests tendinopathy                            |

# Bigliani Classification of Acromion

- Morphology
- Type I flat
  Type II curved
- Type III hooked



### **Screening Out Rotator Cuff Tears**

- No night pain (SN 87.7%)
- No painful arc (SN 97.5%)
- No impingement signs (SN 97.2%)
  No weakness

Returning to the bedside: Using the history and physical examination to identify rotator cuff tears JAM Geri Soc 2000;48:1633-1637



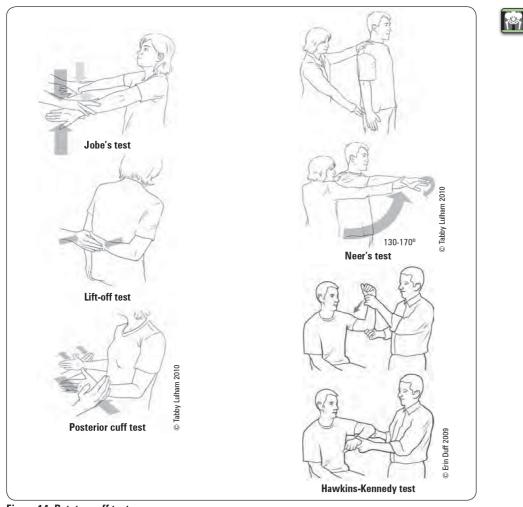
### **Rotator Cuff Muscles**

SITS Supraspinatus Infraspinatus Teres minor Subscapularis



#### Ruling in Rotator Cuff Tears – 98% probability of rotator cuff tear if all 3 of the following are present:

- Supraspinatus weakness
- External rotation weakness
   Positive impingement sign(s)


Diagnosis of rotator cuff tears. *Lancet* 2001; 357:769-770



Does this Patient with Shoulder Pain have Rotator Cuff Disease? The Rational Clinical Examination Systematic Review JAMA 2013;310:837-847

**Study:** 5 studies of sufficient quality including 30-203 shoulders and a prevalence of RCD ranging from 33-81%.

Results/Conclusions: Among pain provocation tests, a positive painful arc test had the greatest specificity and sensitivity (SP 81%, SN 71%) Among strength tests, a positive external rotation lag test and internal rotation lag test were the most accurate for full-thickness tears (SP 47%, SN 94%; SP 97%, SN 83% respectively). The internal rotation lag test was therefore also the most accurate for identifying patients without a full-thickness tear. A positive drop arm test is helpful to identify patients with RCD (SN 24%, SP 93%).



# Figure 14. Rotator cuff tests

# **Acromioclavicular Joint Pathology**

- subluxation or dislocation of AC joint
- 2 main ligaments attach clavicle to scapula: AC and CC ligaments

## Mechanism

• fall onto shoulder with adducted arm or direct trauma to point of shoulder

### **Clinical Features**

- pain with adduction of shoulder and/or palpation over AC joint
- palpate step deformity between distal clavicle and acromion (with dislocation)
- limited ROM

# Investigations

• x-rays: bilateral AP, Zanca view (10-15° cephalic tilt), axillary

### Treatment

## non-operative

- sling 1-3 wk, ice, analgesia, early ROM and rehabilitation
- operative
  - indication: Rockwood Class IV-VI (III if labourer or high level athlete)
  - number of different approaches involving AC/CC ligament reconstruction or screw/hook plate insertion



Pneumothorax or pulmonary contusion are potential complications of severe AC joint dislocation

### **OR15** Orthopedics

Shoulder

Toronto Notes 2016

| Table 10. Rockwoo | d Classification of <i>I</i> | Acromioclaviculaı | r Joint Separation |
|-------------------|------------------------------|-------------------|--------------------|
|-------------------|------------------------------|-------------------|--------------------|

| Grade | Features                                                                                                                                      | Treatment                                                                                                                                        |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| I     | Joint sprain, absence of complete tear of either ligament                                                                                     | Non-operative                                                                                                                                    |
| II    | Complete tear of AC ligament, incomplete tear of CC<br>ligament, without marked elevation of lateral clavicular<br>head                       | Non-operative                                                                                                                                    |
| III   | Complete tear of AC and CC ligaments, $>5$ mm elevation at AC joint, superior aspect of acromion is below the inferior aspect of the clavicle | Most non-operative, operative if labourer or high level<br>athlete<br>Will heal with step deformity, although most fully<br>functional in 4-6 mo |
| IV-VI | Based on the anatomical structure the displaced clavicle<br>is in proximity with                                                              | Operative in most cases                                                                                                                          |

# **Clavicle Fracture**

- incidence: proximal (5%), middle (80%), or distal (15%) third of clavicle
- common in children (unites rapidly without complications)

### Mechanism

• fall on shoulder (87%), direct trauma to clavicle (7%), FOOSH (6%)

### **Clinical Features**

- pain and tenting of skin
- arm is clasped to chest to splint shoulder and prevent movement

### Investigations

- evaluate NVS of entire upper limb
- x-ray: AP, 45° cephalic tilt (superior/inferior displacement), 45° caudal tilt (AP displacement)
- CT: useful for medial physeal fractures and sternoclavicular injury

### Treatment

- · medial and middle third clavicle fractures
  - figure-of-eight sling x 1-2 wk
  - early ROM and strengthening once pain subsides
  - if ends overlap >2 cm consider ORIF
- distal third clavicle fractures
  - undisplaced (with ligaments intact): sling x 1-2 wk
  - displaced (CC ligament injury): ORIF

### Specific Complications (see General Fracture Complications, OR6)

- cosmetic bump usually only complication
- shoulder stiffness, weakness with repetitive activity
- pneumothorax, brachial plexus injuries, and subclavian vessel (all very rare)

# **Frozen Shoulder (Adhesive Capsulitis)**

 disorder characterized by progressive pain and stiffness of the shoulder usually resolving spontaneously after 18 mo

### Mechanism

- primary adhesive capsulitis
  - idiopathic, usually associated with DM
  - usually resolves spontaneously in 9-18 mo
- secondary adhesive capsulitis
  - due to prolonged immobilization
  - shoulder-hand syndrome: CRPS/RSD characterized by arm and shoulder pain, decreased motion, and diffuse swelling
  - following MI, stroke, shoulder trauma
  - poorer outcomes

### **Clinical Features**

- gradual onset (weeks to months) of diffuse shoulder pain with:
  - decreased active AND passive ROM
  - pain worse at night and often prevents sleeping on affected side
  - increased stiffness as pain subsides: continues for 6-12 mo after pain has disappeared

### Investigations

- x-ray: AP (neutral, internal/external rotation), scapular Y, axillary
  - may be normal, or may show demineralization from disease



#### Associated Injuries with Clavicle Fractures

- Up to 9% of clavicle fractures are associated with other fractures (most commonly rib fractures)
- Majority of brachial plexus injuries are associated with proximal third fractures



### Conditions Associated with an Increased Incidence of Adhesive Capsulitis

- Prolonged immobilization (most significant)
- Female gender
- Age >49 yr
- DM (5x)
- · Cervical disc disease
- HyperthyroidismStroke
- Stroi
- Trauma and surgery
- Autoimmune disease



## Stages of Adhesive Capsulitis

- 1. Painful phase: gradual onset, diffuse pain (lasts 6-9 mo)
- Stiff phase: decreased ROM impacting functioning (lasts 4-9 mo)
- Thawing phase: gradual return of motion (lasts 5-26 mo)

## **OR16** Orthopedics

### Treatment

- Freezing Phase
  - active and passive ROM (physiotherapy)
    - NSAIDs and steroid injections if limited by pain
- Thawing Phase
  - manipulation under anesthesia and early physiotherapy
    - arthroscopy for debridement/decompression

# Humerus

# **Proximal Humeral Fracture**

### Mechanism

- young: high energy trauma (MVC)
- elderly: FOOSH from standing height in osteoporotic individuals

#### Clinical Features

proximal humeral tenderness, deformity with severe fracture, swelling, painful ROM, bruising
extends down arm and chest

### Investigations

- test axillary nerve function (deltoid contraction and skin over deltoid)
- x-rays: AP, trans-scapular, axillary are essential
- CT scan: to evaluate for articular involvement and fracture displacement

### Classification

- Neer classification is based on 4 fracture fragments
- displaced: displacement >1 cm and/or angulation >45°
- the Neer system regards displacement, not the fracture line, as meeting criteria for a 'part' in the classification scheme
- ± dislocated/subluxed: humeral head dislocated/subluxed from glenoid

#### Treatment

- treat osteoporosis if needed
- non-operative
  - nondisplaced: broad arm sling immobilization, begin ROM within 14 d to prevent stiffness
     minimally displaced (85% of patients) closed reduction with sling immobilization x 2 wk, gentle ROM
- operative
  - ORIF (anatomic neck fractures, displaced, associated dislocated glenohumeral joint)
  - hemiarthroplasty may be necessary, especially in elderly

## Specific Complications (see General Fracture Complications, OR6)

• AVN, nerve palsy (45% \_ typically axillary nerve), malunion, post-traumatic arthritis

# **Humeral Shaft Fracture**

#### Mechanism

• high energy: direct blows/MVC (especially young); low energy: FOOSH, twisting injuries, metastases (in elderly)

### **Clinical Features**

- pain, swelling, weakness ± shortening, motion/crepitus at fracture site
- must test radial nerve function before and after treatment: look for drop wrist, sensory impairment dorsum of hand

#### Investigations

• x-ray: AP and lateral radiographs of the humerus including the shoulder and elbow joints

### Treatment

- in general, humeral shaft fractures are treated non-operatively
- non-operative
  - $\pm$  reduction; can accept deformity due to compensatory ROM of shoulder
  - hanging cast (weight of arm in cast provides traction across fracture site) with collar and cuff sling immobilization until swelling subsides, then Sarmiento functional brace, followed by ROM
- operative
  - indications: open fracture, neurovascular injury, unacceptable fracture alignment, polytrauma, segmental fracture, pathological fracture, "floating elbow" (simultaneous unstable humeral and forearm fractures), intra-articular
  - ORIF: plating (most common), IM rod insertion, external fixation





Neer Classification

- Based on 4 parts of humerus
- Greater Tuberosity
- Lesser TuberosityHumeral Head
- Shaft

**One-part fracture**: any of the 4 parts with none displaced

Two-part fracture: any of the 4 parts with 1 displaced

**Three-part fracture**: displaced fracture of surgical neck + displaced greater tuberosity or lesser tuberosity

Four-part fracture: displaced fracture of surgical neck + both tuberosities



70-80% of proximal humeral fractures are non-displaced and managed nonoperatively. Of displaced fractures, 20% are two-part, 5% are three-part, and <1% are four-part



Anatomic neck fractures disrupt blood supply to the humeral head and AVN of the humeral head may ensue

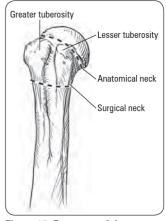



Figure 15. Fractures of the proximal humerus



Acceptable Humeral Shaft Deformities for Non-Operative Treatment

- $<20^{\circ}$  anterior angulation •  $<30^{\circ}$  varus angulation
- <3 cm of shortening</li>

### **OR17** Orthopedics

### Humerus/Elbow

### Toronto Notes 2016

### **Specific Complications** (see *General Fracture Complications*, OR6)

- radial nerve palsy: expect spontaneous recovery in 3-4 mo, otherwise send for EMG
- non-union: most frequently seen in middle 1/3
- · decreased ROM
- compartment syndrome

# **Distal Humeral Fracture**

### Mechanism

- young: high energy trauma (MVC)
- elderly: FOOSH

### **Clinical Features**

- elbow pain and swelling
- assess brachial artery

### Investigations

- x-ray: AP and lateral of humerus and elbow
- CT scan: helpful when suspect shear fracture of capitulum or trochlea

### Classification

• supracondylar, distal single column, distal bicolumnar and coronal shear fractures

#### Treatment

- goal is to restore ROM 30-130° flexion (unsatisfactory outcomes in 25%)
- non-operative
- cast immobilization (in supination for lateral condyle fracture; pronation for medial condyle fractures)
- operative
  - indications: displaced, supracondylar, bicolumnar
  - closed reduction and percunatneous pinning; ORIF; total elbow arthroplasty (bicolumnar in elderly)

# Elbow

# **Supracondylar Fracture**

- subclass of distal humerus fracture: extra-articular, fracture proximal to capitulum and trochlea, usually transverse
- most common in pediatric population (peak age ~7 yr old), rarely seen in adults
- AIN injury commonly associated with extension type

### Mechanism

• >96% are extension injuries via FOOSH (e.g. fall off monkey bars); <4% are flexion injuries

### **Clinical Features**

- pain, swelling, point tenderness
- neurovascular injury: assess median and radial nerves, radial artery (check radial pulse)

### Investigations

- x-ray: AP, lateral of elbow
  - disruption of anterior humeral line suggests supracondylar fracture

### Treatment

- reduction indications: evidence of arterial obstruction, unacceptable angulation, displaced (>50%)
- non-operative
  - nondisplaced: long arm plaster slab in 90° flexion x 3 wk
- operative
  - indications: displaced, vascular injury, open fracture
  - requires percutaneous pinning followed by limb cast with elbow flexed <90°</li>
  - in adults, ORIF is necessary

### Specific Complications (see General Fracture Complications, OR6)

• stiffness is most common

• brachial artery injury (kinking can occur if displaced fracture), median or ulnar nerve injury, compartment syndrome (leads to Volkmann's ischemic contracture), malalignment cubitus varus (distal fragment tilted into varus)



Risk of radial nerve and brachial artery



- Three Joints at the Elbow
- Humeroradial joint
  Humeroulnar joint
- Radioulnar joint





Figure 16. X-ray of transverse displaced supracondylar fracture of humerus with elbow dislocation





Terrible Triad

Radial head fracture

- Coronoid fracture
- Elbow dislocation



Figure 17. X-ray of fat pad sign

injury

### Toronto Notes 2016

# **Radial Head Fracture**

• a common fracture of the upper limb in young adults

### Mechanism

• FOOSH with elbow extended and forearm pronated

### **Clinical Features**

- marked local tenderness on palpation over radial head (lateral elbow)
- decreased ROM at elbow, ± mechanical block to forearm pronation and supination
- pain on pronation/supination

### Investigations

• x-ray: enlarged anterior fat pad ("sail sign") or the presence of a posterior fat pad indicates effusion which could occur with occult radial head fractures

### Table 11. Classification and Treatment of Radial Head Fractures

| Mason Class | <b>Radiographic Description</b>                      | Treatment                                                                                                          |
|-------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1           | Nondisplaced fracture                                | Elbow slab or sling x 3-5 d with early R0M                                                                         |
| 2           | Displaced fracture                                   | ORIF if: angulation $>$ 30°, involves $\geq$ 1/3 of the radial head, or if $\geq$ 3 mm of joint incongruity exists |
| 3           | Comminuted fracture                                  | Radial head excision $\pm$ prosthesis (if ORIF not feasible)                                                       |
| 4           | Comminuted fracture with posterior elbow dislocation | Radial head excision $\pm$ prosthesis                                                                              |

### Specific Complications (see General Fracture Complications, OR6)

- myositis ossificans calcification of muscle
- recurrent instability (if MCL injured and radial head excised)

# **Olecranon Fracture**

### Mechanism

• direct trauma to posterior aspect of elbow (fall onto the point of the elbow) or FOOSH

### Clinical Features

- localized pain, palpable defect
- ± loss of active extension due to avulsion of triceps tendon

### Investigations

• x-ray: AP and lateral (require true lateral to determine fracture pattern)

### Treatment

- non-operative
- non-displaced (<2 mm, stable): cast x 3 wk (elbow in 90° flexion) then gentle ROM
- operative
  - displaced: ORIF (plate and screws or tension band wiring) and early ROM if stable

# **Elbow Dislocation**

- third most common joint dislocation after shoulder and patella
- anterior capsule and collateral ligaments disrupted

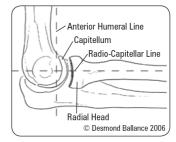
### Mechanism

- elbow hyperextension via FOOSH or valgus/supination stress during elbow flexion
- usually the radius and ulna are dislocated together, or the radius head dislocates and the ulna remains ("Monteggia")
- 80% are posterior/posterolateral, anterior are rare and usually devastating

#### **Clinical Features**

- elbow pain, swelling, deformity
- flexion contracture
- ± absent radial or ulnar pulses

### Investigations


• x-ray: AP and lateral views

### Treatment

 assess NVS before reduction: brachial artery, median and ulnar nerves (can become entrapped during manipulation)



| To avoid stiffness do not immobilize |
|--------------------------------------|
| elbow joint >2-3 wk                  |



### Figure 18. Lateral view of elbow



The anterior humeral line refers to an imaginary line drawn along the anterior surface of the humeral cortex that passes through the middle third of the capitellum when extended inferiorly. In subtle supracondylar fractures the anterior humeral line is disrupted, typically passing through the anterior third of the capitellum



### Elbow Dislocation

The radio-capitellar line refers to an imaginary line along the longitudinal axis of the radius that passes through the centre of the capitellum regardless of the degree of elbow flexion. If the radiocapitellar line does not pass through the centre of the capitellum a dislocation should be suspected

### **OR19** Orthopedics

### Elbow/Forearm

- non-operative
  - closed reduction under conscious sedation (post-reduction x-rays required)
  - Parvin's method: patient lies prone with arm hanging down; apply gentle traction downwards on wrist, as olecranon slips distally, gently lift up the arm at elbow to reduce joint
  - Iong-arm splint with forearm in neutral rotation and elbow in 90° flexion
  - early ROM (<2 wk)</p>
- operative
  - indications: complex dislocation or persistent instability after closed reduction
     ORIF
  - ORIF

### Specific Complications (see General Fracture Complications, OR6)

- stiffness (loss of extension), intra-articular loose body, neurovascular injury (ulnar nerve, median nerve, brachial artery), radial head fracture
- recurrent instability uncommon

# **Epicondylitis**

- lateral epicondylitis = "tennis elbow", inflammation of the common extensor tendon as it inserts into the lateral epicondyle
- medial epicondylitis = "golfer's elbow", inflammation of the common flexor tendon as it inserts into the medial epicondyle

### Mechanism

• repeated or sustained contraction of the forearm muscles/chronic overuse

### **Clinical Features**

- point tenderness over humeral epicondyle and/or distal to it
- pain upon resisted wrist extension (lateral epicondylitis) or wrist flexion (medial epicondylitis)
- generally a self-limited condition, but may take 6-18 mo to resolve

### Treatment

- non-operative (very good outcomes)
  - rest, ice, NSAIDs
  - use brace/strap
  - physiotherapy, stretching, and strengthening
- corticosteroid injection
- operative
  - indication: failed 6-12 mo conservative therapy
  - percutaneous or open release of common tendon from epicondyle

# Forearm

# **Radius and Ulna Shaft Fractures**

### Mechanism

- high energy direct or indirect (MVA, fall from height, sports) trauma
- fractures usually accompanied by displacement due to high force

### **Clinical Features**

- deformity, pain, swelling
- loss of function in hand and forearm

### Investigations

- x-ray: AP and lateral of forearm ± oblique of elbow and wrist
- CT if fracture is close to joint

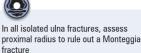
### Treatment

- goal is anatomic reduction since imperfect alignment significantly limits forearm pronation and supination
- ORIF with plates and screws; closed reduction with immobilization usually yields poor results for displaced forearm fractures (except in children)

### **Complications** (see *General Fracture Complications*, OR6)

 soft tissue contracture resulting in limited forearm rotation – surgical release of tissue may be warranted




Mason Class 2 Radial Head Fracture CT reconstruction provides the best detail and ability to appreciate the anatomic orientation of the fracture pattern, enhancing surgical planning and prognosis



Tennis Elbow = laTeral epicondylitis; pain associated with exTension of wrist



#### Elbow Joint Injection Inject at the centre of the triangle formed by the lateral epicondyle, radial head, and olecranon



## **OR20** Orthopedics

### Forearm

### Toronto Notes 2016

# **Monteggia Fracture**

- more common and better prognosis in the pediatric age group when compared to adults
- fracture of the proximal ulna with radial head dislocation and proximal radioulnar joint injury

### Mechanism

- · direct blow on the posterior aspect of the forearm
- hyperpronation
- fall on the hyperextended elbow

### **Clinical Features**

pain, swelling, decreased rotation of forearm ± palpable lump at the radial head
ulna angled apex anterior and radial head dislocated anteriorly (rarely the reverse deformity occurs)

### Investigations

• x-ray: AP, lateral elbow, wrist and forearm

### Treatment

- adults: ORIF of ulna with indirect radius reduction in 90% of patients (ORIF of radius if unsuccessful)
- splint and early post-operative ROM if elbow completely stable, otherwise immobilization in plaster with elbow flexed for 6 wk
- pediatrics: attempt closed reduction and immobilization in plaster with elbow flexed for Bado Type I-III, surgery for Type IV

### **Specific Complications** (see *General Fracture Complications*, OR6)

- PIN: most common nerve injury; observe for 3 mo as most resolve spontaneously
- radial head instability/redislocation
- radioulnar synostosis

# **Nightstick Fracture**

· isolated fracture of ulna without dislocation of radial head

### Mechanism

• direct blow to forearm (e.g. holding arm up to protect face)

### Treatment

- non-operative
  - non-displaced
  - below elbow cast (x 10 d) followed by forearm brace (~8 wk)
- operative
  - displaced
  - ORIF if >50% shaft displacement or >10° angulation

# Galeazzi Fracture

- fracture of the distal radial shaft with disruption of the DRUJ
- most commonly in the distal 1/3 of radius near junction of metaphysis/diaphysis
- 3x more common than Monteggia fracture

### Mechanism

· hand FOOSH with axial loading of pronated forearm or direct wrist trauma

### **Clinical Features**

• pain, swelling, deformity and point tenderness at fracture site

### Investigations

- x-ray: AP, lateral elbow, wrist and forearm
  - shortening of distal radius >5 mm relative to the distal ulna
  - widening of the DRUJ space on AP
  - dislocation of radius with respect to ulna on true lateral

### Treatment

- all cases are operative
  - ORIF of radius; afterwards assess DRUJ stability by balloting distal ulna relative to distal radius
    - if DRUJ is stable and reducible, splint for 10-14 d with early ROM encouraged
    - if DRUJ is unstable, ORIF or percutaneous pinning with long arm cast in supination x 6 wk



### Figure 19. Monteggia fracture



#### Bado Type Classification of Monteggia Fractures

Based on the direction of displacement of the dislocated radial head, generally the same direction as the apex of the ulnar fracture

Type I: anterior dislocation of radial head and proximal/middle third ulnar fracture (60%)

Type II: posterior dislocation of radial head and proximal/middle third ulnar fracture (15%)

Type III: lateral dislocation of radial head and metaphyseal ulnar fracture (20%) Type IV – combined: proximal fracture of the ulna and radius, dislocation of the radial head in any direction (<5%)

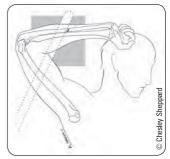



Figure 20. Nightstick fracture



For all isolated radius fractures assess DRUJ to rule out a Galeazzi fracture

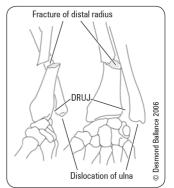



Figure 21. Galeazzi fracture

## OR21 Orthopedics

# Wrist

# **Colles' Fracture**

- extra-articular transverse distal radius fracture (~2 cm proximal to the radiocarpal joint) with dorsal displacement ± ulnar styloid fracture
- most common fracture in those >40 yr, especially in women and those with osteoporotic bone

## Mechanism

• FOOSH

## **Clinical Features**

- "dinner fork" deformity
- swelling, ecchymoses, tenderness

# Investigations

x-ray: AP and lateral wrist

# Treatment

- goal is to restore radial height (13 mm), radial inclination (22°), volar tilt (11°) as well as DRUJ stability and useful forearm rotation
- non-operative
  - closed reduction (think opposite of the deformity)
    - hematoma block (sterile prep and drape, local anesthetic injection directly into fracture site) or conscious sedation
    - closed reduction: 1) traction with extension (exaggerate injury), 2) traction with ulnar deviation, pronation, flexion (of distal fragment not at wrist)
    - dorsal slab/below elbow cast for 5-6 wk
    - x-ray x 1 wk for 3 wk and at cessation of immobilization to ensure reduction is maintained
  - obtain post-reduction films immediately; repeat reduction if necessary
- operative
  - indication: failed closed reduction, or loss of reduction
  - percutaneous pinning, external fixation or ORIF

# **Smith's Fracture**

• volar displacement of the distal radius (i.e. reverse Colles' fracture)

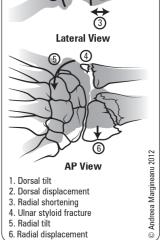
## Mechanism

• fall onto the back of the flexed hand

## Investigations

• x-ray: AP and lateral wrist

# Treatment


- usually unstable and needs ORIF
- if patient is poor operative candidate, may attempt non-operative treatment
  - closed reduction with hematoma block (reduction opposite of Colles')
  - long-arm cast in supination x 6 wk

# **Complications of Wrist Fractures**

- most common complications are poor grip strength, stiffness, and radial shortening
- distal radius fractures in individuals <40 yr of age are usually highly comminuted and are likely to require ORIF
- 80% have normal function in 6-12 mo

## Table 12. Early and Late Complications of Wrist Fractures

| Early                                       | Late                                        |
|---------------------------------------------|---------------------------------------------|
| Difficult reduction $\pm$ loss of reduction | Malunion, radial shortening                 |
| Compartment syndrome                        | Painful wrist secondary to ulnar prominence |
| Extensor pollicis longus tendon rupture     | Frozen shoulder ("shoulder-hand syndrome")  |
| Acute carpal tunnel syndrome                | Post-traumatic arthritis                    |
| Finger swelling with venous block           | Carpal tunnel syndrome                      |
| Complications of a tight cast/splint        | CRPS/RSD                                    |



T

# Figure 22. Colles' fracture and associated bony deformity

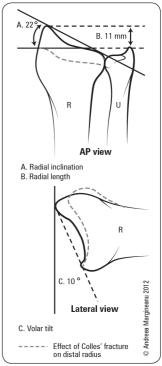



Figure 23. Normal wrist angles + wrist angles in Colles' fracture Note the relative shortening of the radius relative to the ulna on AP view in Colles' fracture



#### Indications for surgical management of Colles' fracture

- displaced intra-articular fracture
- comminuted
- severe osteoporosis
  dorsal angulation >5° or volar tilt
- >20° • >5 mm radial shortening

# www.regentstudies.com

Wrist

## **OR22** Orthopedics

### Wrist/Hand

### Toronto Notes 2016

# **Scaphoid Fracture**

## Epidemiology

- common in young men; not common in children or in patients beyond middle age
- most common carpal bone injured
- may be associated with other carpal or wrist injuries (e.g. Colles' fracture)

### Mechanism

• FOOSH: impaction of scaphoid on distal radius, most commonly resulting in a transverse fracture through the waist (65%), distal (10%), or proximal (25%) scaphoid

### **Clinical Features**

- pain with resisted pronation
- tenderness in the anatomical "snuff box", over scaphoid tubercle, and pain with long axis compression into scaphoid
- usually nondisplaced

### Investigations

- x-ray: AP, lateral, scaphoid views with wrist extension and ulnar deviation
- ± CT or MRI
- bone scan rarely used
- note: a fracture may not be radiologically evident up to 2 wk after acute injury, so if a patient complains of wrist pain and has anatomical snuff box tenderness but a negative x-ray, treat as if positive for a scaphoid fracture and repeat x-ray 2 wk later to rule out a fracture; if x-ray still negative order CT or MRI

### Treatment

- · early treatment critical for improving outcomes
- non-operative
- non-displaced (<1 mm displacement/<15° angulation): long-arm thumb spica cast x 4 wk then short arm cast until radiographic evidence of healing is seen (2-3 mo)
   operative
  - displaced: ORIF with headless/countersink compression screw is the mainstay treatment

### **Specific Complications** (see *General Fracture Complications*, OR6)

- most common: non-union/mal-union (use bone graft from iliac crest or distal radius with fixation to heal)
- AVN of the proximal fragment
- delayed union (recommend surgical fixation)
- scaphoid nonunion advanced collapse (SNAC) chronic nonunion leading to advanced collapse and arthritis of wrist

### Prognosis

- proximal fifth fracture: AVN rate 100%; proximal third fracture: AVN rate 33%
- waist fractures have healing rates of 80-90%
- distal third fractures have healing rates close to 100%

# Hand

• see Plastic Surgery, PL26



#### ORIF Colles' Fracture if Post-Reduction Demonstrates

- Radial shortening >3 mm or,
- Dorsal tilt  $>10^{\circ}$  or,
- Intra-articular displacement/step-off >2 mm

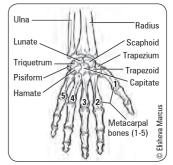



Figure 24. Carpal bones



Scaphoid Fracture Special Tests Tender snuff box: 100% sensitivity, but 29% specific as positive with many other injuries of radial aspect of wrist with FOOSH



## Figure 25. ORIF left scaphoid



The proximal pole of the scaphoid receives as much as 100% of its arterial blood supply from the radial artery that enters at the distal pole. A fracture through the proximal third disrupts this blood supply and results in a high incidence of AVN/non-union



## **OR23** Orthopedics

Spine

## Toronto Notes 2016

# Spine

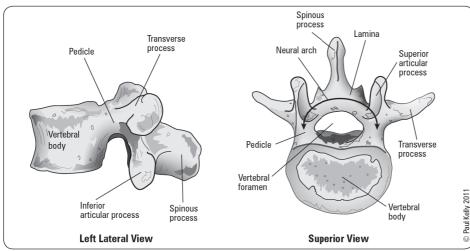



Figure 26. Schematic diagram of vertebral anatomy Adapted from: Moore KL, Agur AMR. Essential Clinical Anatomy, 3rd ed. Philadephia: Lippincott Williams and Wilkins, 2007. p274

# Fractures of the Spine

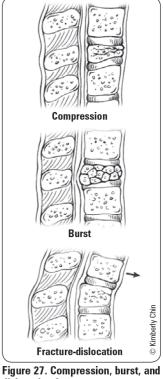
• see Neurosurgery, NS32

# **Cervical Spine**

### **General Principles**

- C1 (atlas): no vertebral body, no spinous process
- C2 (axis): odontoid = dens
- 7 cervical vertebrae; 8 cervical nerve roots
- nerve root exits above vertebra (i.e. C4 nerve root exits above C4 vertebra), C8 nerve root exits below C7 vertebra
- radiculopathy = impingement of nerve root
- myelopathy = impingement of spinal cord

### **Special Testing**


- compression test: pressure on head worsens radicular pain
- distraction test: traction on head relieves radicular symptoms
- Valsalva test: Valsalva maneuver increases intrathecal pressure and causes radicular pain

### Table 13. Cervical Radiculopathy/Neuropathy

|         | 1 1                                            |                           |                                              |                               |
|---------|------------------------------------------------|---------------------------|----------------------------------------------|-------------------------------|
| Root    | C5                                             | C6                        | C7                                           | C8                            |
| Motor   | Deltoid<br>Biceps<br>Wrist extension           | Biceps<br>Brachioradialis | Triceps<br>Wrist flexion<br>Finger extension | Interossei<br>Digital flexors |
| Sensory | Axillary nerve (patch over<br>lateral deltoid) | Thumb                     | Index and middle finger                      | Ring and little finger        |
| Reflex  | Biceps                                         | Biceps<br>Brachioradialis | Triceps                                      | Finger jerk                   |

### X-Rays for C-Spine

- AP spine: alignment
- AP odontoid: atlantoaxial articulation
- lateral
  - vertebral alignment: posterior vertebral bodies should be aligned (translation >3.5 mm is abnormal)
  - angulation: between adjacent vertebral bodies (>11° is abnormal)
  - disc or facet joint widening
  - anterior soft tissue space (at C3 should be ≤3 mm; at C4 should be ≤8-10 mm)
- oblique: evaluate pedicles and intervertebral foramen
- ± swimmer's view: lateral view with arm abducted 180° to evaluate C7-T1 junction if lateral view is inadequate
- ± lateral flexion/extension view: evaluate subluxation of cervical vertebrae



dislocation fractures



## **Canadian C-Spine Rule**

Used to guide imaging for alert (GCS = 15) and stable patients with suspected C-spine injury Obtain radiography if:

- Age  $\geq 65$
- · Paresthesia in the extremities - Inability to rotate neck  $>\!45^\circ$  to the left and right
- · Dangerous mechanism of injury (e.g. high speed MVC, fall from elevation >5 ft, etc.)

Canadian CT Head and C-Spine (CCC) Study Group. Canadian C-Spine Rule Study for alert and stable trauma patients. I. Background and rationale. CJEM 2002:4:84-90



**Canadian Cervical Spine Rule Compared with** Computed Tomography: A Prospective Analysis J Trauma 2011;71:352-355

Study: 3,201 blunt trauma patients screened with CCS. All patients received complete C-spine CT. **Results:** 192 patients with C-spine fracture and 3,009 without fracture on CT. The sensitivity of CCS was 100% (192/192) and specificity 0.6% (18/3009) with a PPV of 6.03% (192/3182) and NPV of 100% (18/18).

Conclusions: CCS is very sensitive but not specific to determine the need for subsequent radiographic evaluation after blunt trauma.

### **OR24** Orthopedics

### Spine

#### Toronto Notes 2016

### **Differential Diagnosis of C-Spine Pain**

• neck muscle strain, cervical spondylosis, cervical stenosis, RA (spondylitis), traumatic injury, whiplash, myofascial pain syndrome

### **C-SPINE INJURY**

• see Neurosurgery, NS33

# **Thoracolumbar Spine**

## **General Principles**

- spinal cord terminates at conus medullaris (L1)
- individual nerve roots exit below pedicle of vertebra (i.e. L4 nerve root exits below L4 pedicle)

### **Special Tests**

- straight leg raise: passive lifting of leg (30-70°) reproduces radicular symptoms of pain radiating down posterior/lateral leg to knee ± into foot
- Lasegue maneuver: dorsiflexion of foot during straight leg raise makes symptoms worse or, if leg
  is less elevated, dorsiflexion will bring on symptoms
- femoral stretch test: with patient prone, flexing the knee of the affected side and passively extending the hip results in radicular symptoms of unilateral pain in anterior thigh

### Table 14. Lumbar Radiculopathy/Neuropathy

| Root              | L4                                                                                                      | L5                                                         | S1                                                                                          |
|-------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Motor             | Quadriceps (knee extension + hip<br>adduction)<br>Tibialis anterior (ankle inversion<br>+ dorsiflexion) | Extensor hallucis longus<br>Gluteus medius (hip abduction) | Peroneus longus + brevis (ankle<br>eversion)<br>Gastrocnemius + soleus (plantar<br>flexion) |
| Sensory           | Medial malleolus                                                                                        | 1st dorsal webspace and<br>lateral leg                     | Lateral foot                                                                                |
| Screening<br>Test | Squat and Rise                                                                                          | Heel Walking                                               | Walking on Toes                                                                             |
| Reflex            | Knee (patellar)                                                                                         | Medial hamstring*                                          | Ankle (Achilles)                                                                            |
| Test              | Femoral stretch                                                                                         | Straight leg raise                                         | Straight leg raise                                                                          |

\*Unreliable

### **Differential Diagnosis of Back Pain**

- 1. mechanical or nerve compression (>90%)
  - degenerative (disc, facet, ligament)
  - peripheral nerve compression (disc herniation)
  - spinal stenosis (congenital, osteophyte, central disc)
  - cauda equina syndrome
- 2. others (<10%)
  - neoplastic (primary, metastatic, multiple myeloma)
  - infectious (osteomyelitis, TB)
  - metabolic (osteoporosis)
  - traumatic fracture (compression, distraction, translation, rotation)
  - spondyloarthropathies (ankylosing spondylitis)
  - referred (aorta, renal, ureter, pancreas)

### **DEGENERATIVE DISC DISEASE**

- · loss of vertebral disc height with age results in
  - bulging and tears of annulus fibrosus
  - change in alignment of facet joints
  - osteophyte formation

### Mechanism

compression over time with age

# **Clinical Features**

- axial back pain without radicular symptoms
- pain worse with axial loading and bending
- negative straight leg raise





-9.

C-Spine X-Ray in Trauma Must see C7-T1



All trauma patients with suspected C-spine injury require immediate immobilization of C-spine at scene of accident with spine board, C-collar, and sandbags

### **OR25** Orthopedics

### Investigations

• X-ray, MRI, provocative discography

## Treatment

non-operative

- staying active with modified activity
- back strengthening
- NSAIDs
- do not treat with opioids; no proven efficacy of spinal traction or manipulation
- operative rarely indicated

decompression ± fusion

• no difference in outcome between non-operative and surgical management at 2 yr

### Table 15. Types of Low Back Pain

|                | Mechanical Back Pain       |                                 | <b>Direct Nerve Root Compression</b>          |                                                                                               |
|----------------|----------------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|
|                | Disc Origin                | Facet Origin                    | Spinal Stenosis                               | Root Compression                                                                              |
| Pain Dominance | Back                       | Back                            | Leg                                           | Leg                                                                                           |
| Aggravation    | Flexion                    | Extension, standing,<br>walking | Exercise, extension, walking, standing        | Flexion                                                                                       |
| Onset          | Gradual                    | More sudden                     | Congenital or acquired                        | Acute leg $\pm$ back pain                                                                     |
| Duration       | Long (weeks, months)       | Shorter (days, weeks)           | Acute or chronic history<br>(weeks to months) | Short episodes<br>Attacks (minutes)                                                           |
| Treatment      | Relief of strain, exercise | Relief of strain, exercise      | Relief of strain, exercise                    | Relief of strain, exercise<br>+ surgical decompression<br>if progressive or severe<br>deficit |

# **SPINAL STENOSIS**

- narrowing of spinal canal <10 mm
- congenital (idiopathic, osteopetrosis, achondroplasia) or acquired (degenerative, iatrogenic post spinal surgery, ankylosing spondylosis, Paget's disease, trauma)

### **Clinical Features**

- ± bilateral back and leg pain
- neurogenic claudication
- ± motor weakness
- normal back flexion; difficulty with back extension (Kemp sign)
- positive Straight leg raise, pain not worse with Valsalva

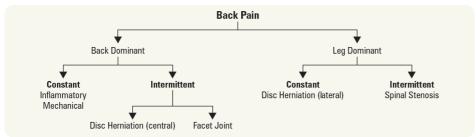
## Investigations

• CT/MRI reveals narrowing of spinal canal, but gold standard = CT myelogram

### Treatment

### non-operative

- vigorous physiotherapy (flexion exercises, stretch/strength exercises), NSAIDs, lumbar epidural steroids
- operative
  - indication: non-operative failure >6 mo
  - decompressive surgery


## Table 16. Differentiating Claudication

|             | Neurogenic                                                | Vascular               |
|-------------|-----------------------------------------------------------|------------------------|
| Aggravation | With standing or exercise<br>Walking distance variable    | Walking set distance   |
| Alleviation | Change in position (usually flexion, sitting, lying down) | Stop walking           |
| Time        | Relief in $\sim$ 10 min                                   | Relief in $\sim$ 2 min |
| Character   | Neurogenic $\pm$ neurological deficit                     | Muscular cramping      |

### **OR26** Orthopedics

Spine

### Toronto Notes 2016



Red Flags for BACK PAIN Bowel or bladder dysfunction Anesthesia (saddle) Constitutional symptoms/malignancy Khronic disease Paresthesias Age >50 yr IV drug use Neuromotor deficits

### Figure 28. Approach to back pain

# MECHANICAL BACK PAIN

• back pain NOT due to prolapsed disc or any other clearly defined pathology

### **Clinical Features**

- dull backache aggravated by activity and prolonged standing
- morning stiffness
- no neurological signs

### Treatment

- symptomatic (analgesics, physiotherapy)
- prognosis: symptoms may resolve in 4-6 wk, others become chronic

### LUMBAR DISC HERNIATION

- tear in annulus fibrosus allows protrusion of nucleus pulposus causing either a central, posterolateral, or lateral disc herniation, most commonly at L5-S1 > L4-5 > L3-4
- 3:1 male to female
- only 5% become symptomatic
- usually a history of flexion-type injury

### **Clinical Features**

- back dominant pain (central herniation) or leg dominant pain (lateral herniation)
- tenderness between spinous processes at affected level
- muscle spasm ± loss of normal lumbar lordosis
- neurological disturbance is segmental and varies with level of central herniation
   motor weakness (L4, L5, S1)
  - diminished reflexes (L4, S1)
  - diminished sensation (L4, L5, S1)
- · positive straight leg raise
- positive contralateral SLR
- positive Lasegue and Bowstring sign
- cauda equina syndrome (present in 1-10%) surgical emergency

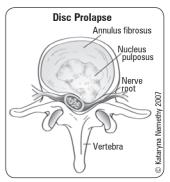
### Investigations

• x-ray, MRI, consider a post-void residual volume to check for urinary retention; post-void >100 mL should heighten suspicion for cauda equine syndrome

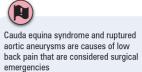
### Treatment

- non-operative
  - symptomatic
    - extension protocol
  - NSAIDS
- operative
  - indication: progressive neurological deficit, failure of symptoms to resolve within 3 mo or cauda equina syndrome due to central disc herniation
  - surgical discectomy
- prognosis
- 90% of patients improve in 3 mo with non-operative treatment

### SPONDYLOLYSIS


· defect in the pars interarticularis with no movement of the vertebral bodies

### Mechanism


trauma: gymnasts, weightlifters, backpackers, loggers, labourers

### **Clinical Features**

activity-related back pain, pain with unilateral extension (Michelis' test)



### Figure 29. Disc herniation causing nerve root compression





Neurogenic claudication is position dependent; vascular claudication is exercise dependent



MRI abnormalities (e.g. spinal stenosis, disc herniation) are quite common in both asymptomatic and symptomatic individuals and are not necessarily an indication for intervention without clinical correlation



# Most common symptom of

- radiculopathy (L4-S3)
- Leg dominant, constant, burning pain
  Pain radiates down leg ± foot
- Most common cause = disc
- herniation

### **OR27** Orthopedics

### Spine/Pelvis

## Toronto Notes 2016

### Investigations

- oblique x-ray: "collar" break in the "Scottie dog's" neck
- bone scan
- CT scan

### Treatment

- non-operative
  - activity restriction, brace, stretching exercise

### ADULT ISTHMIC SPONDYLOLISTHESIS

• defect in pars interarticularis causing a forward slip of one vertebra on another usually at L5-S1, less commonly at L4-5

#### Mechanism

• congenital (children), degenerative (adults), traumatic, pathological, teratogenic

### **Clinical Features**

- · lower back pain radiating to buttocks relieved with sitting
- neurogenic claudication
- L5 radiculopathy
- Meyerding Classification (percentage of slip)

### Investigations

• x-ray (AP, lateral, obliques flexion-extension views), MRI

#### Treatment

- non-operative
- activity restriction, bracing, NSAIDS
- operative see Table 17

## Table 17. Classification and Treatment of Spondylolisthesis

| Class | Percentage of Slip | Treatment                                              |  |
|-------|--------------------|--------------------------------------------------------|--|
| 1     | 0-25%              | Symptomatic operative fusion only for intractable pain |  |
| 2     | 25-50              | Same as above                                          |  |
| 3     | 50-75              | Decompression for spondylolisthesis and spinal fusion  |  |
| 4     | 75-100             | Same as above                                          |  |
| 5     | >100               | Same as above                                          |  |
|       |                    |                                                        |  |

### **Specific Complications**

• may present as cauda equina syndrome due to roots being stretched over the edge of L5 or sacrum

# Pelvis

# **Pelvic Fracture**

#### Mechanism

- young: high energy trauma, either direct or by force transmitted longitudinally through the femur
- elderly: fall from standing height, low energy trauma
- lateral compression, vertical shear, or anteroposterior compression fractures

### **Clinical Features**

- · pain, inability to bear weight
- local swelling, tendernessdeformity of lower extremity
- pelvic instability

### Investigations

- x-ray: AP pelvis, inlet and outlet views, Judet views (obturator and iliac oblique for acetabular fracture)
  - 6 cardinal radiographic lines of the acetabulum: ilioischial line, iliopectineal line, tear drop, roof, posterior rim, anterior rim
- CT scan useful for evaluating posterior pelvic injury and acetabular fracture
- assess genitourinary injury (rectal exam, vaginal exam, hematuria, blood at urethral meatus) if involved, the fracture is considered an open fracture

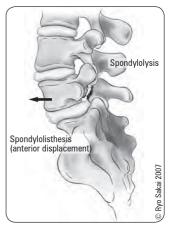
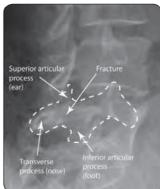




Figure 30. Spondylolysis, spondylolisthesis



ure 31. "Scottie dog" fracture

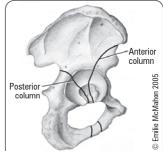



Figure 32. Pelvic columns



# **Possible Radiological Findings**

- · Pubic rami fractures: superior/inferior Pubic symphysis diastasis: common
- in AP compression (N=5 mm) · Sacral fractures: common in lateral
- compression • SI joint diastasis: common in AP
- compression (N=1-4 mm) Disrupted anterior column (iliopectineal line) or posterior column
- (ilioischial line) "Teardrop" displacement: acetabular
- fracture Iliac, ischial avulsion fractures
- Displacement of the major fragment: superior (VS), open book (APC), bucket handle (LC)

## **OR28** Orthopedics

## Pelvis/Hip

Toronto Notes 2016

## Classification

**Table 18. Tile Classification of Pelvic Fractures** 

| Туре | Stability                                    | Description                                                                                                                                                                                                                                                              |
|------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | Rotationally stable<br>Vertically stable     | A1: fracture not involving pelvic ring (ex: avulsion or iliac wing fracture)<br>A2: minimally displaced fracture of pelvic ring (e.g. ramus fracture)<br>A3: transverse sacral fracture                                                                                  |
| В    | Rotationally unstable<br>Vertically stable   | B1: open book (external rotation)<br>B2: lateral compression – ipsilateral<br>B2-1: with anterior ring rotation/displacement through ipsilateral rami<br>B2-2: with anterior ring rotation/displacement through non-ipsilateral rami<br>(bucket-handle)<br>B3: Bilateral |
| C    | Rotationally unstable<br>Vertically unstable | C1: unilateral<br>C1-1: iliac fracture, C1-2: sacroiliac fracture-dislocation C1-3: sacral fracture<br>C2: bilateral with 1 side type B and 1 side type C<br>C3: bilateral both sides type C                                                                             |

# Treatment

- ABCDEs
- non-operative treatment: protected weight bearing indication: stable fracture
- emergency management
  - IV fluids/blood
  - pelvic binder/sheeting

  - external fixation vs. emergent angiography/embolization
  - ± laparotomy (if FAST/DPL positive)
- operative treatment: ORIF
  - indications:
  - unstable pelvic ring injury
  - disruption of anterior and posterior SI ligament
  - symphysis diastasis >2.5 cm
  - vertical instability of the posterior pelvis
  - open fracture

### **Complications** (see General Fracture Complications, OR6)

- hemorrhage (life-threatening)
- injury to rectum or urogenital structures
- · obstetrical difficulties, sexual and voiding dysfunction
- persistent SI joint pain
- post-traumatic arthritis of the hip with acetabular fractures
- high risk of DVT/PE

# Hip

# **Hip Dislocation**

- full trauma survey (see Emergency Medicine, Initial Patient Assessment/Management, ER2)
- examine for neurovascular injury PRIOR to open or closed reduction
- reduce hip dislocations ASAP (ideally within 6 h) to decrease risk of AVN of the femoral head • hip precautions (no extreme hip flexion, adduction, internal or external rotation) for 6 wk
- post-reduction
- see Hip Dislocation Post-Total Hip Arthroplasty, OR30

# ANTERIOR HIP DISLOCATION

- mechanism: posteriorly directed blow to knee with hip widely abducted
- clinical features: shortened, abducted, externally rotated limb
- treatment
  - closed reduction under conscious sedation/GA
  - post-reduction CT to assess joint congruity

# POSTERIOR HIP DISLOCATION

- most frequent type of hip dislocation
- mechanism: severe force to knee with hip flexed and adducted • e.g. knee into dashboard in MVC
- clinical features: shortened, adducted, internally rotated limb
- treatment

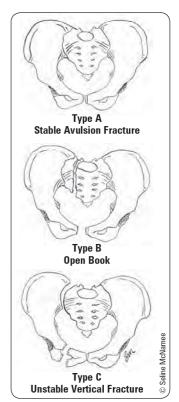
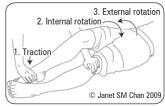




Figure 33. Illustration of the Tile classification of pelvic fractures







at the time of injury

# Up to 50% of patients with hip dislocations suffer fractures elsewhere

### **OR29** Orthopedics

### Toronto Notes 2016

- closed reduction under conscious sedation/GA only if no associated femoral neck fracture or ipsilateral displacement
- ÔRIF if unstable, intra-articular fragments or posterior wall fracture
- post-reduction CT to assess joint congruity and fractures
- if reduction is unstable, put in traction x 4-6 wk

## **CENTRAL HIP FRACTURE DISLOCATION**

• traumatic injury where femoral head is pushed medially through acetabulum

## **COMPLICATIONS FOR ALL HIP DISLOCATIONS**

- post-traumatic OA
- AVN of femoral head
- fracture of femoral head, neck, or shaft
- sciatic nerve palsy in 25% (10% permanent)
- HO
- thromboembolism DVT/PE

# **Hip Fracture**

### **General Features**

- acute onset of hip pain
- · unable to weight-bear
- shortened and externally rotated leg
- painful ROM

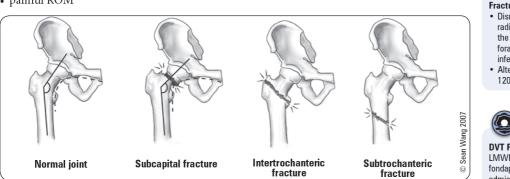



Figure 35. Subcapital, intertrochanteric, subtrochanteric fractures

## Table 19. Overview of Hip Fractures

| Fracture Type                                                                                                     | Definition                                                                                                                       | Mechanism                                                                                                    | Special Clinical<br>Features         | Investigations                                    | Treatment                                                                     | Complications                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Femoral Neck<br>(Subcapital)                                                                                      | Intracapsular<br>(See <i>Garden</i><br><i>Classification</i> , Table 20)                                                         | Young: MVC, fall from height<br>Elderly: fall from standing,<br>rotational force                             | Same as general                      | X-Ray: AP hip, AP pelvis, cross table lateral hip |                                                                               | DVT, non-union, AVN, dislocation                                                                                 |
| Intertrochanteric<br>Stable: intact<br>posteromedial<br>cortex<br>Unstable: non-intact<br>posteromedial<br>cortex | Extracapsular fracture<br>including the greater and<br>lesser trochanters and<br>transitional bone between<br>the neck and shaft | Same as femoral neck<br>fracture<br>Direct or indirect force<br>transmitted to the<br>intertrochanteric area | Ecchymosis at back<br>of upper thigh | X-Ray: AP pelvis,<br>AP/lateral hip               | Closed reduction<br>under fluoroscopy<br>then dynamic hip<br>screw or IM nail | DVT, varus<br>displacement of<br>proximal fragment,<br>malrotation, non-<br>union, failure of<br>fixation device |
| Subtrochanteric                                                                                                   | Fracture begins at<br>or below the lesser<br>trochanter and involves<br>the proximal femoral shaft                               | Young: high energy trauma<br>Elderly: osteopenic bone +<br>fall, pathological fracture                       | Ecchymosis at back of upper thigh    | X-Ray: AP pelvis, AP/<br>lateral<br>hip and femur | Closed/open<br>under fluoroscopy<br>then plate fixation<br>or IM nail         | Malalignment, non-<br>union, wound infection                                                                     |

### Table 20. Garden Classification of Femoral Neck Fractures

| Туре | Displacement | Extent       | Alignment            | Trabeculae | Treatment                                                               |
|------|--------------|--------------|----------------------|------------|-------------------------------------------------------------------------|
| I    | None         | "Incomplete" | Valgus or<br>neutral | Malaligned | Internal fixation to prevent displacement<br>(valgus impacted fracture) |
| II   | None         | Complete     | Neutral              | Aligned    | Internal fixation to prevent displacement                               |
| III  | Some         | Complete     | Varus                | Malaligned | Ycung: ORIF<br>Elderly: hemi-/total hip arthroplasty                    |
| IV   | Complete     | Complete     | Varus                | Aligned    | Ycung: ORIF<br>Elderly: hemi-/total hip arthroplasty                    |



- · Distal to proximal blood supply along femoral neck to head (medial and lateral femoral circumflex arteries)
- · Susceptible to AVN if blood supply disrupted
- Etiology: femoral neck fracture, chronic systemic steroid use, SCFE, Legg-Calvé-Perthes, SLE, RA



#### **Rochester Method to Reduce** Dislocations

- Patient lying supine with hip and knee flexed on injured side
- Surgeon stands on patient's injured side Surgeon passes one arm under patient's flexed knee, reaching to place that hand on patient's other knee (thus supporting
- patient's injured leg)With other hand, surgeon grasps patient's ankle on injured side, applying
- traction, while assistant stabilizes pelvis Reduction via traction, internal rotation, then external rotation once femoral head clears acetabular rim



#### X-Ray Features of Subcapital Hip Fractures

- Disruption of Shenton's line (a radiographic line drawn along the upper margin of the obturator foramen, extending along the inferomedial side of the femoral neck)
- · Altered neck-shaft angle (normal is 120-130°)



**DVT Prophylaxis in Hip Fractures** LMWH (i.e. enoxaparin 40 mg SC bid), fondaparinux, low dose heparin on admission, do not give < 12 h before surgery

www.regentstudies.com

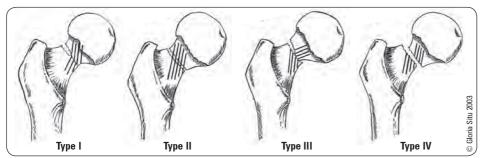



Figure 36. Garden classification of femoral neck fractures

# **Arthritis of the Hip**

### Etiology

• OA, inflammatory arthritis, post-traumatic arthritis, late effects of congenital hip disorders, or septic arthritis

### **Clinical Features**

- pain (groin, medial thigh) and stiffness aggravated by activity, better with rest in OA
- RA: morning stiffness >1 h, multiple joint swelling, hand nodules
- decreased ROM (internal rotation is lost first)
- crepitus
- effusion
- ± fixed flexion contracture leading to apparent limb shortening (Thomas test)
- ± Trendelenburg sign

### Investigations

- x-ray: weight bearing views of affected joint
  - OA: joint space narrowing, subchondral sclerosis, subchondral cysts, osteophytes
  - RA: osteopenia, erosion, joint space narrowing, subchondral cysts, symmetric joint space narrowing
- blood work: ANA, RF

## Treatment

- non-operative
- weight reduction, activity modification, physiotherapy, analgesics, walking aids
- operative
  - indication: advanced disease
  - realign = osteotomy; replace = arthroplasty; fuse = arthrodesis
- complications with arthroplasty: component loosening, dislocation, HO, thromboembolism, infection, neurovascular injury, limb length discrepancy
- arthroplasty is standard of care in most patients with hip arthritis

# **Hip Dislocation Post-Total Hip Arthroplasty**

- occurs in 1-4% of primary THA and 10-16% of revision THAs
- risk factors: neurological impairment, post-traumatic arthritis, revision surgery, substance abuse

### Mechanism

• THA that is unstable when hip is flexed, adducted and internally rotated, or extended and externally rotated (avoid flexing hip >90° or crossing legs for ~6 wk after surgery)

### Investigations

• x-ray: AP pelvis, AP and lateral hip

### Treatment

- non-operative
- closed reduction: external abduction splint to prevent hip adduction (most often)
- operative
- indication: 2 or more dislocations with evidence of polyethylene wear, malalignment, hardware failure
  - revision THA
  - conversion to hemiarthroplasty with a larger femoral head
  - resection arthroplasty is a last resort

### Complications

- sciatic nerve palsy in 25% (10% permanent)
- HO
- infection



**DVT Prophylaxis in Elective THA** (continue 10-35 d post-operative) Fondaparinux, low molecular weight heparin, or coumadin

# Femur

# **Femoral Diaphysis Fracture**

# Mechanism

- high energy trauma (MVC, fall from height, gunshot wound)
- in children, can result from low energy trauma (spiral fracture)

# **Clinical Features**

- shortened, externally rotated leg (if fracture displaced)
- inability to weight-bear
- often open injury, always a Gustilo III (see Table 5, OR9)
- Winquist and Hansen classification

# Investigations

• x-ray: AP pelvis, AP/lateral hip, femur, knee

# Treatment

- stabilize patient
- non-operative (uncommon)
  - indication: non-displaced femoral shaft fractures in co-morbid patients
    long leg cast
- operative
- ORIF with anterograde IM nail (most common) or retrograde IM nail, external fixator for unstable patients, open fractures, or highly vascular areas, or plate and screws for open growth plates within 24 h
- early mobilization and strengthening

# Complications

- hemorrhage requiring transfusion
- fat embolism leading to ARDS
- extensive soft tissue damage
- ipsilateral hip dislocation/fracture (2-6%)
- nerve injury

# **Distal Femoral Fracture**

• fractures from articular surface to 5cm above metaphyseal flare

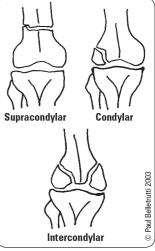
# Mechanism

- direct high energy force or axial loading
- three types: extra articular, partial articular, complete articular

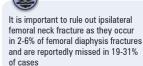
# **Clinical Features**

- extreme pain
- knee effusion (hemarthrosis)
- shortened, externally rotated leg if displaced
- neurovascular deficits can occur with displaced fracture

# Investigations


- x-ray: AP, lateral, traction views (AP, lateral, oblique,
- CT, angiography if diminished pulses


# Treatment


- non-operative (uncommon)
  - indication: non-displaced fracture
     hinged knee brace
- operative
- indication: displaced fracture, intra-articular fracture, non-union
- ORIF or retrograde IM nail if supracondylar and non-comminuted
- early mobilization and strengthening

# Complications (see General Fracture Complications, OR6)

- femoral artery tear
- popliteal artery injury
- nerve injury
- extensive soft tissue injury
- angulation deformities







Toronto Notes 2016

Femur

Knee

### Toronto Notes 2016

# Knee

# **Evaluation of Knee**

## **Common Complaints**

- general orthopedic history
- also inquire about common knee symptoms
  - locking: mechanical block to extension
    - torn meniscus/loose body in joint
  - pseudo-locking: limited ROM without mechanical block
     effusion, muscle spasm after injury, arthritis
  - painful clicking (audible)
  - torn meniscus
  - giving way: instability
    - cruciate ligament or meniscal tear, patellar dislocation

## **Special Tests of the Knee**

- anterior and posterior drawer tests
  - demonstrate ACL and PCL, respectively
    - knee flexed at 90°, foot immobilized, hamstrings released
    - if able to sublux tibia anteriorly (anterior drawer test), then ACL may be torn
    - if able to sublux tibia posteriorly (posterior drawer test), then PCL may be torn
    - anterior drawer test for ACL: 3.8 positive likelihood ratio, 0.30 negative likelihood ratio
- Lachmann test
  - demonstrates torn ACL
  - hold knee in 10-20° flexion, stabilizing the femur
  - try to sublux tibia anteriorly on femur
  - similar to anterior drawer test, more reliable due to less muscular stabilization
  - for ACL: 25.0 positive likelihood ratio, 0.1 negative likelihood ratio
- Thessaly test
  - demonstrates meniscal tear
  - patient stands flat footed on one leg while the examiner provides his or her hands for balance. The patient then flexes the knee to 20° and rotates the femur on the tibia medially and laterally three times while maintaining the 20° flexion
  - positive for a meniscal tear if the patient experiences medial or lateral joint line discomfort
  - for medial meniscus: 29.67 positive likelihood ratio, 0.11 negative likelihood ratio
  - for lateral meniscus: 23.0 positive likelihood ratio, 0.083 negative likelihood ratio

# • posterior sag sign

- demonstrates torn PCL
- may give a false positive anterior draw sign
- flex knees and hips to 90°, hold ankles and knees
- view from the lateral aspect
- if one tibia sags posteriorly compared to the other, its PCL is torn
- pivot shift sign
  - demonstrates torn ACL
  - start with the knee in extension
  - internally rotate foot, slowly flex knee while palpating and applying a valgus force
  - normal knee will flex smoothly
  - if incompetent ACL, tibia will sublux anteriorly on femur at start of maneuver. During flexion, the tibia will reduce and externally rotate about the femur (the "pivot")
  - reverse pivot shift (start in flexion, externally rotate, apply valgus and extend knee) suggests torn PCL
  - composite assessment for ACL: 25.0 positive likelihood ratio, 0.04 negative likelihood ratio
     composite assessment for PCL: 21.0 positive likelihood ratio, 0.05 negative likelihood ratio

### • collateral ligament stress test

- palpate ligament for "opening" of joint space while testing
- with knee in full extension, apply valgus force to test MCL, apply varus force to test LCL
- repeat tests with knee in 20° flexion to relax joint capsule
- opening in 20° flexion due to MCL damage only
- opening in 20° of flexion and full extension is due to MCL, cruciate, and joint capsule damage
- tests for meniscal tear
- joint line tenderness
  - joint line pain when palpated
  - palpate one side at a time and watch patient's eyes
  - for meniscal tear: 0.9 positive likelihood ratio, 1.1 negative likelihood ratio
  - crouch compression test
    - joint line pain when squatting (anterior pain suggests patellofemoral pathology)

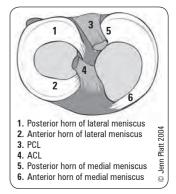
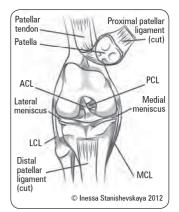




Figure 38. Diagram of the right tibial plateau



# Figure 39. Knee ligament and anatomy

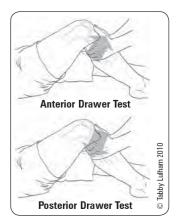



Figure 40. Anterior and posterior drawer test



- 6 Degrees of Freedom of the Knee
- Flexion and extension
  - External and internal rotation
  - Varus and valgus angulation
  - Anterior and posterior glide
    Medial and lateral shift
  - Medial and lateral shift
     Compression and distraction



On physical exam of the knee, do not forget to evaluate the hip

### **OR33** Orthopedics

Knee

Toronto Notes 2016

- McMurray's test useful collaborative information
  - with knee in flexion, palpate joint line for painful "pop/click"
  - internally rotate foot, varus stress, and extend knee to test lateral meniscus
  - externally rotate foot, valgus stress, and extend knee to test medial meniscus
  - for meniscal tear: 1.3 positive likelihood ratio, 0.8 negative likelihood ratio
- composite assessment for meniscal tears: 2.7 positive likelihood ratio, 0.4 negative likelihood ratio

## X-Rays

- AP standing, lateral
- skyline: tangential view with knees flexed at 45° to see patellofemoral joint
- 3-foot standing view: useful in evaluating leg length and varus/valgus alignment
- Ottawa Knee Rules (see Emergency Medicine, ER16)

# **Cruciate Ligament Tears**

• ACL tear much more common than PCL tear

### Table 21. Comparison of ACL and PCL Injuries



Figure 41. McMurray test

|           | Anterior Cruciate Ligament                                                                                                                                         | Posterior Cruciate Ligament                                                                                                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anatomy   | From medial wall of lateral femoral condyle to the<br>anteromedial and posterolateral intercondyloid<br>eminence of the tibial plateau                             | Lateral wall of medial femoral condyle to posterior<br>intercondyloid eminence of the tibial plateau                                                  |
| Mechanism | Sudden deceleration<br>Hyperextension and internal rotation of tibia on femur<br>(i.e. "plant and turn")                                                           | Sudden posterior displacement of tibia when knee is<br>flexed or hyperextended (e.g. dashboard MVC injury)                                            |
| History   | Audible "pop"<br>Immediate swelling<br>Knee "giving way"<br>Inability to continue activity                                                                         | Audible "pop"<br>Immediate swelling<br>Pain with push off<br>Cannot descend stairs                                                                    |
| Physical  | Effusion (hemarthrosis)<br>Posterolateral joint line tenderness<br>Positive anterior drawer<br>Positive Lachmann<br>Pivot shift<br>Test for MCL, meniscal injuries | Effusion (hemarthrosis)<br>Anteromedial joint line tenderness<br>Positive posterior drawer<br>Reverse pivot shift<br>Other ligamentous, bony injuries |
| Treatment | Stable knee with minimal functional impairment:<br>immobilization 2-4 wk with early ROM and<br>strengthening<br>High demand lifestyle: ligament reconstruction     | Unstable knee or young person/high-demand lifestyle:<br>ligament reconstruction                                                                       |

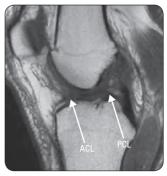



Figure 42. T1 MRI of torn ACL and PCL

# **Collateral Ligament Tears**

## Mechanism

- valgus force to knee = MCL tear
- varus force to knee = LCL tear

# **Clinical Features**

- swelling/effusion
- tenderness above and below joint line medially (MCL) or laterally (LCL)
- joint laxity with varus or valgus force to knee
  laxity with endpoint suggests partial tear
  - laxity with no endpoint suggests a complete tear
- test for other injuries (e.g. O'Donoghue's unhappy triad), common peroneal nerve injury

## Investigations

• x-ray: AP and lateral; MRI

### Treatment

- non-operative
  - partial tear: immobilization x 2-4 wk with early ROM and strengthening
    complete tear: immobilization at 30° flexion
- operative
  - indication: multiple ligamentous injuries
  - surgical repair of ligaments



- ACL rupture
- MCL rupture
- Meniscal damage (medial and/or lateral)



Partial ligamentous tears are much more painful than complete ligamentous tears

# **Meniscal Tears**

medial tear much more common than lateral tear

### Mechanism

- twisting force on knee when it is partially flexed (e.g. stepping down and turning)
- requires moderate trauma in young person but only mild trauma in elderly due to degeneration

## **Clinical Features**

- immediate pain, difficulty weight-bearing, instability, and clicking
- · increased pain with squatting and/or twisting
- effusion (hemarthrosis) with insidious onset (24-48 h after injury)
- joint line tenderness medially or laterally
- locking of knee (if portion of meniscus mechanically obstructing extension)

### Investigations

MRI, arthroscopy

### Treatment

- non-operative
  - indication: not locked
  - ROM and strengthening (NSAIDs)
- operative
  - indication: locked or failed non-operative treatment
  - arthroscopic repair/partial meniscectomy

# Quadriceps/Patellar Tendon Rupture

### Mechanism

- sudden forceful contraction of quadriceps during an attempt to stop
- more common in obese patients and those with pre-existing degenerative changes in tendon
  - DM, SLE, RA, steroid use, renal failure on dialysis

### **Clinical Features**

- · inability to extend knee or weight-bear
- possible audible "pop'
- patella in lower or higher position with palpable gap above or below patella respectively
- may have an effusion

### Investigations

- ask patient to straight leg raise (unable with complete rupture)
- knee x-ray to rule out patellar fracture, MRI to distinguish between complete and partial tears
- lateral view: patella alta with patella tendon rupture, patella baja (infera) with quadriceps tendon rupture

### Treatment

- non-operative
  - indication: incomplete tears with preserved extension of knee
  - immobilization in brace
- operative
  - indication: complete ruptures with loss of extensor mechanism
- early surgical repair: better outcomes compared with delayed repair (>6 wk post injury)
- · delayed repair complicated by quadriceps contracture, patella migration, and adhesions

# **Dislocated Knee**

## Mechanism

- · high energy trauma
- by definition, caused by tears of multiple ligaments

### **Clinical Features**

- · classified by relation of tibia with respect to femur anterior, posterior, lateral, medial, rotary
- knee instability
- effusion
- pain
- ischemic limb
- Schenck classification



#### Meniscal repair is done if tear is peripheral with good vascular supply, is a longitudinal tear and 1-4cm in length

Partial meniscectomy is done with tears not amenable to repair (complex, degenerative, radial)



### Tissue Sources for ACL Reconstruction

- Hamstring • Middle 1/3 patellar tendon
- (bone-patellar-bone)
- Allograft (e.g. cadaver)



ACL tear more common than PCL tear MCL tear more common than LCL tear

Patella alta = high riding patella Patella baja (infera) = low riding patella

www.regentstudies.com

Knee



## **OR35** Orthopedics

### Knee/Patella

## Toronto Notes 2016

### Investigations

- x-ray: AP, lateral, skyline
  - associated radiographic findings include tibial plateau fracture dislocations, proximal fibular fractures, and avulsion of fibular head
- ankle brachial index (abnormal if <0.9)
- arteriogram or CT angiogram if abnormal vascular exam (such as abnormal pedal pulses)

### Treatment

- urgent closed reduction
  - complicated by interposed soft tissue
- assessment of peroneal nerve, tibial artery, and ligamentous injuries
- emergent operative repair if vascular injury, open fracture or dislocation, non-reducible dislocation, compartment syndrome
- knee immobilization x 6-8 wk

# **Specific Complications**

- · high incidence of associated injuries
  - popliteal artery tear
  - peroneal nerve injury
  - capsular tear
- chronic: instability, stiffness, post-traumatic arthritis

# Patella

# **Patellar Fracture**

### Mechanism

- direct blow to the patella: fall, MVC (dashboard)
- indirect trauma by sudden flexion of knee against contracted quadriceps

## **Clinical Features**

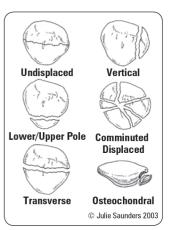
- marked tenderness
- · inability to extend knee or straight leg raise
- proximal displacement of patella
- patellar deformity
- ± effusion/hemarthrosis

### Investigations

- x-rays: AP, lateral, skyline
- do not confuse with bipartite patella: congenitally unfused ossification centres with smooth margins on x-ray at superolateral corner

### Treatment

- non-operative
  - indication: non-displaced (step-off <2-3 mm and fracture gap <1-4 mm)</li>
    - straight leg immobilization 1-4 wk with hinged knee brace, weight bearing as tolerated
    - progress in flexion after 2-3 wk
    - physiotherapy: quadriceps strengthening when pain has subsided
- operative
  - indication: displaced (>2mm), comminuted, disrupted extensor mechanism
- ORIF, if comminuted may require partial/complete patellectomy
- goal: restore extensor mechanism with maximal articular congruency


# **Patellar Dislocation**

### Mechanism

- usually a non-contact twisting injury
- lateral displacement of patella after contraction of quadriceps at the start of knee flexion in an almost straight knee joint
- · direct blow, e.g. knee/helmet to knee collision

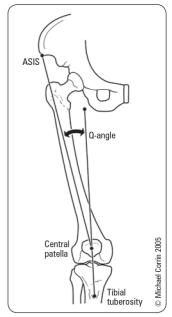
## **Risk Factors**

- · young, female
- obesity
- high-riding patella (patella alta)
- knock-knees (genu valgus)
- Q-angle (quadriceps angle)  $\geq 20^{\circ}$
- shallow intercondylar groove
- weak vastus medialis
- tight lateral retinaculum
- ligamentous laxity (Ehlers-Danlos)



### Figure 43. Types of patellar fractures




# Complications

- Symptomatic wiring
  Loss of reduction
- Osteonecrosis (proximal fragment)
- Hardware failure
- Hardware failure
  Knee stiffness
- NonunionInfection



#### Patellar Open Reduction and Internal Fixation

- Longitudinal midline excision over patella
- Longitudinal cannulated screws with tension-band wiring fixation
- Preserve patellar bone
- Antibiotic, debridement, early fixation in open fracture



### Figure 44. Q-angle

The angle between a vertical line through the patella and tibial tuberosity and a line from the ASIS to the middle patella; the larger the angle the greater the amount of lateral force on the knee (normal <20°)

### **OR36** Orthopedics

## **Clinical Features**

- knee catches or gives way with walking
- severe pain, tenderness anteromedially from rupture of capsule
- weak knee extension or inability to extend leg unless patella reduced
- · positive patellar apprehension test
  - passive lateral translation results in guarding and patient apprehension
- often recurrent, self-reducing
- concomitant MCL injury
- increased Q-angle
- J-sign

### Investigations

- x-rays: AP, lateral, skyline view of patella
  - check for fracture of medial patella (most common) and lateral femoral condyle

## Treatment

- non-operative first
  - NSAIDs, activity modification, and physical therapy
  - short-term immobilization for comfort then 6 wk controlled motion
  - progressive weight bearing and isometric quadriceps strengthening
- operative
  - indication: if recurrent or if loose bodies present
  - surgical tightening of medial capsule and release of lateral retinaculum, possible tibial tuberosity transfer, or proximal tibial osteotomy

# Patellofemoral Syndrome (Chondromalacia Patellae)

· syndrome of anterior knee pain associated with idiopathic articular changes of patella

### **Risk Factors**

- malalignment causing patellar maltracking (Q angle  $\geq 20^{\circ}$ , genu valgus)
- post-trauma
- deformity of patella or femoral groove
- · recurrent patellar dislocation, ligamentous laxity
- excessive knee strain (athletes)

### Mechanism

- softening, erosion and fragmentation of articular cartilage, predominantly medial aspect of patella
- commonly seen in active young females

### **Clinical Features**

- deep, aching anterior knee pain
  - exacerbated by prolonged sitting (theatre sign), strenuous athletic activities, stair climbing, squatting or kneeling
- · insidious onset and vague in nature
- sensation of instability, pseudolocking
- pain with extension against resistance through terminal 30-40°
- pain with compression of patella with knee ROM or resisted knee extension
- · swelling rare, minimal if present
- palpable crepitus

### Investigations

- x-ray: AP, lateral, skyline may find chondrosis, lateral patellar tilt, patella alta/baja, or shallow
- sulcus
- CT-scan
- MRI best to assess articular cartillage

### Treatment

- non-operative
  - continue non-impact activities; rest and rehabilitation
  - NSAIDs
  - physiotherapy: vastus medialis and core strengthening
- operative
  - indication: failed non-operative treatment
  - tibial tubercle elevation
  - arthroscopic shaving/debridement
  - lateral release of retinaculum



Pain with firm compression of patella into medial femoral groove is pathognomonic of patellofemoral syndrome

J-sign: associated with patella alta, increased lateral translation in extension which pops into groove as the patella engages the trochlea early in flexion

Patella



### Tibia

### Toronto Notes 2016

# Tibia

# **Tibial Plateau Fracture**

### Mechanism

- varus/valgus load ± axial loading (e.g. fall from height)
- · femoral condyles driven into proximal tibia
- can result from minor trauma in osteoporotics

### **Clinical Features**

- frequency: lateral > bicondylar > medial
- medial fractures require higher energy often have concomitant vascular injuries
- knee effusion
- · inability to bear weight
- swelling ٠
- associated with compartment syndrome, ACL injury and meniscal tears
- Schatzker classification

### Investigations

- x-ray: AP, lateral, oblique
- CT: pre-operative planning, identify articular depression and comminution
- ABI if any differences in pulses between extremities

### Treatment

| Approach #1 (based on amount of depression seen on x-ray) | Non-operative indication (if depression on x-ray is <3 mm):<br>straight leg immobilization x 4-6 wk with progressive ROM weight bearing<br>Operative indication (if depression is >3 mm):<br>ORIF often requiring bone grafting to elevate depressed fragment                                    |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approach #2 (based on varus/valgus instability)           | Non-operative indication (if minimal varus/valgus instability [<15°]):<br>straight leg immobilization x 4-6 wk with progressive ROM weight bearing<br>Operative indication (if significant varus/valgus instability [>15°]):<br>ORIF often requiring bone grafting to elevate depressed fragment |

### **Specific Complications** (see *General Fracture Complications*, OR6)

- ligamentous injuries
- meniscal lesions
- AVN
- infection • OA

# **Tibial Shaft Fracture**

• most common long bone and open fracture

### Mechanism

- low energy pattern: torsional injury
- high energy: including MVC, falls, sporting injuries

### **Clinical Features**

- pain, inability to bear weight
- open vs. closed
- · amount of displacement
- NVS

### Investigations

- x-ray: AP, lateral, skyline
  - full length, plus knee and ankle

### Treatment

- non-operative
  - indication: closed and minimally displaced or adequate closed reduction • long leg cast x 8-12 wk, functional brace after
- operative

  - indication: displaced or open
     if displaced and closed: ORIF with reamed IM nail, plate and screws, or external fixator
    - if open: antibiotics, I&D, external fixation or IM nail and vascularized coverage of soft tissue defects (often heal poorly)

### Specific Complications (see General Fracture Complications, OR6)

- high incidence of neurovascular injury and <u>compartment syndrome</u>
- poor soft tissue coverage (critical to outcome)



| Schatzker Classification |                                                             |  |  |
|--------------------------|-------------------------------------------------------------|--|--|
| Type Description         |                                                             |  |  |
| I                        | Involvement of lateral plateau split fracture               |  |  |
| П                        | Lateral split-depressed fracture                            |  |  |
| III                      | Involvement of lateral plateau:<br>pure depression fracture |  |  |
| IV                       | Medial plateau fracture                                     |  |  |
| V                        | Bicondylar plateau fracture                                 |  |  |
| VI                       | Bicondylar with metaphyseal/<br>diaphyseal involvement      |  |  |

Low Molecular Weight Heparin for Prevention of Venous Thromboembolism in Patients with

Incidence of VTE was 4.3-40% in patients immobilized for >1wk without thromboprophylaxis

or with placebo. With daily LMWH subcutaneous

injections, incidence was 0-37% (OR 0.49, 95%

CI 0.34-0.72). There were no reports of heparin-

induced thrombocytopenia. The use of LMWH

significantly reduces the number of VTE events.

in outpatients with lower-leg immobilization

Lower-Leg Immobilization Cochrane DB Syst Rev 2014;4:CD006681 Purpose: To evaluate the effectiveness of LMWH as VTE prophylaxis in patients with lower-leg immobilization in an ambulant setting. Selection Criteria: RCTs and CCTs comparing LMWH to no prophylaxis or placebo in patie immobilized with a plaster cast or brace Results/Conclusions: 6 RCTs, 1,490 patients.



Figure 45. Tibial shaft fracture treated with IM nail and screws



Tibial shaft fractures have high incidence of compartment syndrome and are often associated with soft tissue injuries

# Ankle

# **Evaluation of Ankle and Foot Complaints**

## Special Tests

- anterior drawer: examiner attempts to displace the foot anteriorly against a fixed tibia
- talar tilt: foot is stressed in inversion and angle of talar rotation is evaluated by x-ray

## X-Ray

- AP, lateral
- mortise view: ankle at 15° of internal rotation
  - gives true view of ankle joint
  - joint space should be symmetric with no talar tilt
- Ottawa Ankle Rules should guide x-ray use (see Emergency Medicine, ER17); nearly 100%
- sensitivity
- ± CT to better characterize fractures

# **Ankle Fracture**

## Mechanism

- pattern of fracture depends on the position of the ankle when trauma occurs
- generally involves
  - ipsilateral ligamentous tears or transverse bony avulsion
  - contralateral shear fractures (oblique or spiral)
- · classification systems
  - Danis-Weber
  - Lauge-Hansen: based on foot's position and motion relative to leg

## **Danis-Weber Classification**

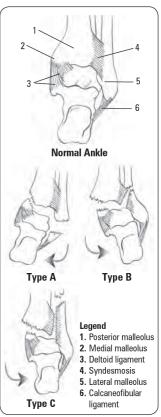
- based on level of fibular fracture relative to syndesmosis
- Type A (infra-syndesmotic)
  - pure inversion injury
  - avulsion of lateral malleolus below plafond or torn calcaneofibular ligament
  - ± shear fracture of medial malleolus
- Type B (trans-syndesmotic)
  - external rotation and eversion (most common)
  - ± avulsion of medial malleolus or rupture of deltoid ligament
  - spiral fracture of lateral malleolus starting at plafond
- Type C (supra-syndesmotic)
  - pure external rotation
  - avulsion of medial malleolus or torn deltoid ligament
  - ± posterior malleolus avulsion with posterior tibio-fibular ligament
  - fibular fracture is above plafond (called Maisonneuve fracture if at proximal fibula)
  - frequently tears syndesmosis

# Treatment

- non-operative
  - indication: non-displaced, no history of dislocation, usually lateral sided injury only below knee cast, NWB
- operative
  - indications
    - any fracture-dislocation: restore vascularity, minimize articular injury, reduce pain and skin pressure

      - most of type B, and all of type C • trimalleolar (medial, posterior, lateral) fractures
      - ◆ talar tilt >10<sup>o</sup>
      - medial clear space on x-ray greater than superior clear space
      - open fracture/open joint injury
  - ORIF

## Complications


- high incidence of post-traumatic arthritis
- wrinkle test: skin shows wrinkles, to determine if soft tissue swelling has resolved to an extent to reduce complications



after injury and in the ER

#### Ottawa Ankle Rules (see Emergency Medicine, ER17) X-rays are only required if: Pain in the malleolar zone AND bony tenderness over the posterior aspect of the medial or lateral malleolus OR inability to weight bear both immediately







## Ankle/Foot

### Toronto Notes 2016

# **Ligamentous Injuries**

• see Figure 48 for ankle ligaments

### Medial Ligament Complex (deltoid ligament)

- · eversion injury
- usually avulses medial or posterior malleolus and strains syndesmosis

### Lateral Ligament Complex (Anterior Talofibular, Calcaneofibular, Posterior Talofibular)

- inversion injury, >90% of all ankle sprains
- ATF most commonly and severely injured if ankle is plantar flexed
- swelling and tenderness anterior to lateral malleolus
- ++ ecchymoses
- positive ankle anterior drawer
- may have significant medial talar tilt on inversion stress x-ray

## Treatment

- non-operative
  - microscopic tear (Grade I)
    - rest, ice, compression, elevation (RICE)
  - macroscopic tear (Grade II)
    - strap ankle in dorsiflexion and eversion x 4-6 wk
    - physiotherapy: strengthening and proprioceptive retraining
  - complete tear (Grade III)
    - below knee walking cast x 4-6 wk
    - physiotherapy: strengthening and proprioceptive retraining
    - surgical intervention may be required if chronic symptomatic instability develops

# Foot

# **Talar Fracture**

## Mechanism

- axial loading or hyperdorsiflexion (MVC, fall from height)
- 60% of talus covered by articular cartilage
- talar neck is most common fracture of talus (50%)
- tenuous blood supply runs distal to proximal along talar neck
  high risk of AVN with displaced fractures
  - Ingh fisk of Aviv with displaced fraction

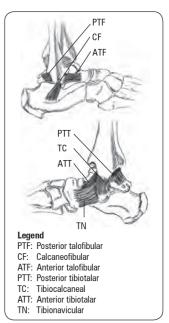
### Investigations

- x-ray: AP, lateral, Canale view
- CT to better characterize fracture
- MRI can clearly define extent of AVN

### Treatment

- non-operative
  - indication: non-displaced
  - NWB below knee cast x 6 weeks
- operative
  - indication: displaced (Hawkin's Classification)
  - ORIF (high rate of nonunion, AVN)
  - neck fracture: Pin (nondisplaced) or ORIF

# **Calcaneal Fracture**


• most common tarsal fracture

#### Mechanism

- high energy, axial loading: fall from height onto heels
- 10% of fractures associated with compression fractures of thoracic or lumbar spine (rule out spine injury)
- 75% intra-articular and 10% are bilateral



With a history of trauma from axial loading of lower limb always consider spinal injuries, femoral neck, tibial plateau, and talar/calcaneal fractures



### Figure 47. Ankle ligament complexes



### Principles

- Avoid wound complications (10-25%)
  Restore articular congruity
- Restore normal calcaneal width and
- height
  Maximum functional recovery may take longer than 12 mo

### **OR40** Orthopedics

## **Clinical Features**

- marked swelling, bruising on heel/sole
- wider, shortened, flatter heel when viewed from behind
- varus heel

### Investigations

- x-rays: AP, lateral, oblique (Broden's view) Harris axial
- loss of Bohler's angle
- CT: gold-standard, assess intra-articular extension

## Treatment

- · closed vs. open reduction is controversial
- NWB cast x 3 mo with early ROM and strengthening

# **Achilles Tendonitis**

## Mechanism

- chronic inflammation from activity or poor-fitting footwear
- may also develop heel bumps (retrocalcaneobursitis or Haglund deformity)

### **Clinical Features**

- pain, stiffness, and crepitus with ROM
- thickened tendon, palpable bump

### Investigations

• x-ray: lateral, evaluate bone spur and calcification; U/S, MRI (to assess degenerative change)

### Treatment

- non-operative
  - rest, NSAIDs, shoe wear modification
  - heel sleeves and pads are mainstay of non-operative treatment
  - gentle gastrocnemius-soleus stretching, eccentric training with physical therapy, deep tissue calf massage
  - orthotics, open back shoes
  - shockwave therapy in chronic tendonitis
  - DO NOT inject steroids (risk of tendon rupture)

# **Achilles Tendon Rupture**

### Mechanism

- loading activity, stop-and-go sports (e.g. squash, tennis, basketball)
- secondary to chronic tendonitis, steroid injection

### **Clinical Features**

- audible pop, sudden pain with push off movement
- sensation of being kicked in heel when trying to plantar flex
- palpable gap
- apprehensive toe off when walking
- weak plantar flexion strength
- Thompson test: with patient prone, plantar flexion when calf is squeezed by examiner
   no passive plantar flexion is positive test = ruptured tendon

### Investigations

• x-ray (to rule out other pathology), U/S or MRI (for partial vs complete ruptures)

## Treatment

- non-operative
  - indication: low demand or elderly
  - cast foot in plantar flexion (to relax tendon) x 8-12 wk
- operative
  - indication: high demand
  - surgical repair, then cast as above x 6-8 wk



Haglund Deformity: an enlargement of the posterior-superior tuberosity of the calcaneus



#### Complications of Achilles Tendon Rupture

- Infection
- Sural nerve injury
   Re-rupture: surgical repair decreases likelihood of re-rupture compared to non-operative management



The most common site of Achilles tendon rupture is 2-6 cm from its insertion where the blood supply is the poorest

Toronto Notes 2016

Foot

# **Plantar Fasciitis (Heel Spur Syndrome)**

- inflammation of plantar aponeurosis at calcaneal origin
- common in athletes (especially runners, dancers)
- also associated with obesity, DM, seronegative and seropositive arthritis

### Mechanism

- repetitive strain injury causing microtears and inflammation of plantar fascia
- common in athletes (especially runners, dancers)
- · also associated with obesity, DM, seronegative and seropositive arthritis

### **Clinical Features**

- · insidious onset of heel pain, pain when getting out of bed and stiffness
- intense pain when walking from rest that subsides as patient continues to walk, worse at end of day with prolonged standing
- swelling, tenderness over sole
- greatest at medial calcaneal tubercle and 1-2 cm distal along plantar fascia
- pain with toe dorsiflexion (stretches fascia)

### Investigations

- plain radiographs to rule out fractures
- often see bony exostoses (heel spurs) at insertion of fascia into medial calcaneal tubercle
- spur is secondary to inflammation, not the cause of pain

### Treatment

- non-operative
  - pain control and stretching programs are first line
  - rest, ice, NSAIDs, steroid injection
  - physiotherapy: Achilles tendon and plantar fascia stretching, extracorporeal shockwave therapy
  - orthotics with heel cup to counteract pronation and disperse heel strike forces
- operative
  - indication: failed non-operative treatment
  - endoscopic surgical release of fascia
  - spur removal is not required

# **Bunions (Hallux Valgus)**

 bony deformity characterized by medial displacement of first metatarsal and lateral deviation of hallux

### Mechanism

- valgus alignment on 1st MTP (hallux valgus) causes eccentric pull of extensor and intrinsic muscles
- many associated deformities in foot from altered mechanics
- reactive exostosis forms with thickening of the skin creating a bunion
- most often associated with poor-fitting footwear (high heel and narrow toe box)
- can be hereditary (70% have family history)
- 10x more frequent in women

### **Clinical Features**

- painful bursa over medial eminence of 1st MT head
- pronation (rotation inward) of great toe
- numbness over medial aspect of great toe

#### Investigations

• x-ray: standing AP/lateral/sesamoid view, NWB oblique

### Treatment

- indications: painful corn or bunion, overriding 2nd toe
- non-operative (first line)
  - properly fitted shoes (low heel) and toe spacer
- operative: goal is to restore normal anatomy, not cosmetic reasons alone
   osteotomy with realignment of 1st MTP joint (Chevron Procedure)
  - arthrodesis

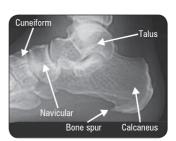



Figure 48. X-ray of bony heel spur

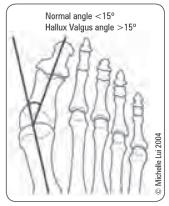



Figure 49. Hallux valgus

## OR42 Orthopedics

## Foot/Pediatric Orthopedics

### Toronto Notes 2016

# **Metatarsal Fracture**

- as with the hand, 1<sup>st</sup>, 4<sup>th</sup>, 5<sup>th</sup> MT are relatively mobile, while the 2<sup>nd</sup> and 3<sup>rd</sup> are fixed
- use Ottawa Foot Rules to determine need for x-ray

### Table 22. Types of Metatarsal Fractures

| Fracture Type                                                  | Mechanism                                                      | Clinical                                               | Treatment                                                                      |
|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
| Avulsion of Base of 5th MT                                     | Sudden inversion followed by<br>contraction of peroneus brevis | Tender base of 5 <sup>th</sup> MT                      | Requires ORIF if displaced                                                     |
| Midshaft 5 <sup>th</sup> MT<br>(Jones Fracture)                | Stress injury                                                  | Painful shaft of 5 <sup>th</sup> MT                    | *NWB BK cast x 6 wk<br>ORIF if athlete                                         |
| Shaft 2 <sup>nd</sup> , 3 <sup>rd</sup> MT<br>(March Fracture) | Stress injury                                                  | Painful shaft of 2 <sup>nd</sup> or 3 <sup>rd</sup> MT | Symptomatic                                                                    |
| 1 <sup>st</sup> MT                                             | Trauma                                                         | Painful 1 <sup>st</sup> MT                             | ORIF if displaced otherwise<br>*NWB BK cast x 3 wk then<br>walking cast x 2 wk |
| Tarso-MT Fracture –<br>Dislocation<br>(Lisfranc Fracture)      | Fall onto plantar flexed foot or direct crush injury           | Shortened forefoot prominent base                      | ORIF                                                                           |

\*NWB BK = Non weight bearing, below knee

# **Pediatric Orthopedics**

# Fractures in Children

- type of fracture
  - thicker, more active periosteum results in pediatric specific fractures: greenstick (one cortex), torus (i.e. 'buckle', impacted cortex) and plastic (bowing)
  - distal radius fracture most common in children (phalanges second), the majority are treated with closed reduction and casting
  - adults fracture through both cortices
- epiphyseal growth plate
  - weaker part of bone, susceptible to fractures
  - plate often mistaken for fracture on x-ray and vice versa (x-ray opposite limb for comparison), especially in elbow
  - tensile strength of bone < ligaments in children, therefore clinician must be confident that fracture and/or growth plate injury have been ruled out before diagnosing a sprain
  - intra-articular fractures have worse consequences in children because they usually involve the growth plate
- anatomic reduction
  - gold standard with adults
  - may cause limb length discrepancy in children (overgrowth)
  - accept greater angular deformity in children (remodelling minimizes deformity)
- time to heal
- shorter in children
- always be aware of the possibility of child abuse
  - make sure stated mechanism compatible with injury
  - high index of suspicion with fractures in non-ambulating children (<1 yr); look for other signs, including x-ray evidence of healing fractures at different sites and different stages of healing

# **Stress Fractures**

### Mechanism

- insufficiency fracture
- stress applied to a weak or structurally deficient bonefatigue fracture
- repetitive, excessive force applied to normal bone
- most common in adolescent athletes
- tibia is most common site

### Diagnosis

- · localized pain and tenderness over the involved bone
- plain films may not show fracture for 2 wk
- bone scan positive in 12-15 d

### Treatment

• rest from strenuous activities to allow remodelling (can take several months)



#### Ottawa Ankle and Foot Rules (see <u>Emergency Medicine</u>, ER17) X-rays only required if:

Pain in the midfoot zone AND bony tenderness over the navicular or base of the fifth metatarsal OR inability to weight bear both immediately after injury and in the ER



Greenstick fractures are easy to reduce but can redisplace while in cast due to intact periosteum

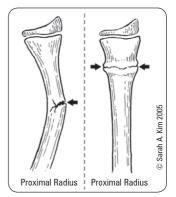



Figure 50. Greenstick (left) and torus (right) fractures



**Ossification Centres of the Elbow** 

CRITOE Capitellum: 1 yr Radial head: 4 yr Internal (medial) epicondyle: 6 yr Trochlea: 8 yr Olecranon: 10 yr External (lateral) epicondyle: 12 yr (± 1 yr)

### **Pediatric Orthopedics**

# **Evaluation of the Limping Child**

• see Pediatrics, P91

# **Epiphyseal Injury**

### Table 23. Salter-Harris Classification of Epiphyseal Injury

| Description                                       | Treatment                                                                                                                                                                |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transverse through growth plate                   | Closed reduction and cast immobilization (except SCFE $-$ ORIF); heals well, 95% do not affect growth                                                                    |
| Through metaphysis and along growth plate         | Closed reduction and cast if anatomic; otherwise ORIF                                                                                                                    |
| Through epiphysis to plate and along growth plate | Anatomic reduction by ORIF to prevent growth arrest, avoid fixation across growth plate                                                                                  |
| Through epiphysis and metaphysis                  | Closed reduction and cast if anatomic; otherwise ORIF                                                                                                                    |
| Crush injury of growth plate                      | High incidence of growth arrest; no specific treatment                                                                                                                   |
|                                                   | Transverse through growth plate<br>Through metaphysis and along growth plate<br>Through epiphysis to plate and along growth<br>plate<br>Through epiphysis and metaphysis |

\* Types III - IV are more likely to cause growth arrest and progressive deformity

# **Slipped Capital Femoral Epiphysis**

- type I Salter-Harris epiphyseal injury at proximal hip
- most common adolescent hip disorder, peak incidence at pubertal growth spurt
- risk factors: male, obese (#1 factor), hypothyroid (risk of bilateral involvement)

## Etiology

- multifactorial
  - genetic: autosomal dominant, blacks > caucasians
  - cartilaginous physis hypertrophies too rapidly under growth hormone effects
  - sex hormone secretion, which stabilizes physis, has not yet begun
  - overweight: mechanical stress
  - trauma: causes acute slip

# **Clinical Features**

- acute: sudden, severe pain with limp
- chronic (typically): groin and anterior thigh pain, may present with knee pain
- positive Trendelenburg sign on affected side, due to weakened gluteal muscles
  tender over joint capsule
- restricted internal rotation, abduction, flexion
- Whitman's sign: obligatory external rotation during passive flexion of hip
- Loder classification: stable vs. unstable (provides prognositic information)
- unstable means patient cannot ambulate even with crutches

### Investigations

- x-ray: AP, frog-leg, lateral radiographs both hips
  - posterior and medial slip of epiphysis
  - disruption of Klein's line
  - AP view may be normal or show widened/lucent growth plate compared with opposite side

# Treatment

- operative
  - mild/moderate slip: stabilize physis with pins in current position
  - severe slip: ORIF or pin physis without reduction and osteotomy after epiphyseal fusion

### Complications

• AVN (roughly half of unstable hips), chondrolysis (loss of articular cartilage, resulting in narrowing of joint space), pin penetration, premature OA, loss of ROM

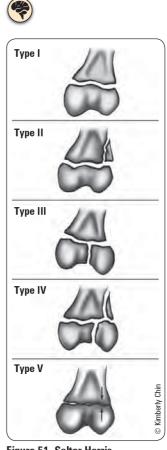



Figure 51. Salter-Harris classification



In SCFE, bilateral involvement occurs in about 25%



SCFE – Klein's Line On AP view, line drawn along superolateral border of femoral neck should cross at least a portion of the femoral

epiphysis. If it does not, suspect SCFE

### Toronto Notes 2016

# **Developmental Dysplasia of the Hip**

- abnormal development of hip resulting in dysplasia and subluxation/dislocation of hip
- most common orthopedic disorder in newborns

### Etiology

- due to ligamentous laxity, muscular underdevelopment, and abnormal shallow slope of acetabular roof
- spectrum of conditions that lead to hip subluxation and dislocation
   dislocated femoral head completely out of acetabulum
  - dislocated femoral head co
    dislocatable head in socket
  - head subluxates out of joint when provoked
  - dysplastic acetabulum, more shallow and more vertical than normal
- painless (if painful suspect septic dislocation)

## **Physical Exam**

- · diagnosis is clinical
  - limited abduction of the flexed hip (<50-60°)</li>
  - affected leg shortening results in asymmetry in skin folds and gluteal muscles, wide perineum
  - Barlow's test (for dislocatable hip)
    - flex hips and knees to 90° and grasp thigh
    - fully adduct hips, push posteriorly to try to dislocate hips
  - Ortolani's test (for dislocated hip)
    - initial position as above but try to reduce hip with fingertips during abduction
    - positive test: palpable clunk is felt (not heard) if hip is reduced
  - Galeazzi's sign
    - knees at unequal heights when hips and knees flexed
    - dislocated hip on side of lower knee
    - difficult test if child <1 yr
    - Trendelenburg test and gait useful if older (>2 yr)

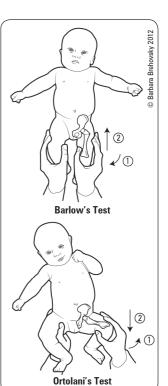
### Investigations

- U/S in first few months to view cartilage (bone is not calcified in newborns until 4-6 mo)
- follow up radiograph after 3 mo
- x-ray signs (at 4-6 mo): false acetabulum, acetabular index >25°, broken Shenton's line, femoral neck above Hilgenreiner's line, ossification centre outside of inner lower quadrant (quadrants formed by intersection of Hilgenreiner's and Perkin's line)

### Treatment

- 0-6 mo: reduce hip using Pavlik harness to maintain abduction and flexion
- 6-18 mo: reduction under GA, hip spica cast x 2-3 mo (if Pavlik harness fails)
- >18 mo: open reduction; pelvic and/or femoral osteotomy

### Complications


- · redislocation, inadequate reduction, stiffness
- AVN of femoral head

# Legg-Calvé-Perthes Disease (Coxa Plana)

- ideopathic AVN of femoral head, presents at 4-8 yr of age
- 12% bilateral, M > F = 5:1, 1/1,200
- associations
  - family history
  - low birth weight
  - abnormal pregnancy/delivery
  - ADHD in 33% of cases, delayed bone age in 89%
  - second-hand smoke exposure
- Asian, Inuit, Central Europeankey features
  - AVN of proximal femoral epiphysis, abnormal growth of the physis, and eventual remodelling of regenerated bone

### **Clinical Features**

- child with antalgic or Trendelenburg gait ± pain
- intermittent knee, hip, groin, or thigh pain
- flexion contracture (stiff hip): decreased internal rotation and abduction of hip
- limb length discrepancy (late)



### Figure 52. Barlow's test (checks if hips are dislocatable) and Ortolani's test (checks if hips are dislocated)



5 Fs that Predispose to Developmental Dysplasia of the Hip

Family history Female Frank breech First born LeFt hip



Figure 53. Pelvic x-ray and reference lines and angles for assessment of DDH Triradiate Cartilage y-shaped epiphyseal plate at junction of ilium, ischium and pubis Hilgenreiner's Line Line running between triradiate cartilages Perkin's Line Line through lateral margin of acetabulum, perpendicular to Hilgenreiner's Line Shenton's Line Arced line along inferior border of femoral neck and superior margin of obturator foramen Acetabular Index Angle between Hilgenreiner's Line and line from triradiate

cartilage to point on lateral margin of acetabulum

## **OR45** Orthopedics

### **Pediatric Orthopedics**

Toronto Notes 2016

Most common in adolescent athletes.

especially jumping/sprinting sports

Children diagnosed with coxa plana <6 yr of age have improved prognosis

### Investigations

- x-ray: AP pelvis, frog leg laterals
  - may be negative early (if high index of suspicion, move to bone scan or MRI)
  - eventually, characteristic collapse of femoral head (diagnostic)

## Treatment

- goal is to preserve ROM and keep femoral head contained in acetabulum
- non-operative
  - physiotherapy: ROM exercises
  - brace in flexion and abduction x 2-3 yr (controversial)
- non-operative
  - femoral or pelvic osteotomy (>8 yr of age or severe)
  - prognosis better in males, <5 yr, <50% of femoral head involved, abduction >30°
- 60% of involved hips do not require operative intervention
- natural history is early onset OA and decreased ROM

# **Osgood-Schlatter Disease**

- inflammation of patellar ligament at insertion point on tibial tuberosity
- M>F
- age of onset: boys 12-15 yr; girls 8-12 yr

### Mechanism

 repetitive tensile stress on insertion of patellar tendon over the tibial tuberosity causes minor avulsion at the site and subsequent inflammatory reaction (tibial tubercle apophysitis)

## **Clinical Features**

- · tender lump over tibial tuberosity
- pain on resisted leg extension
- anterior knee pain exacerbated by jumping or kneeling, relieved by rest

## Investigations

• x-ray: lateral knee: fragmentation of the tibial tubercle,  $\pm$  ossicles in patellar tendon

### Treatment

- · benign, self-limited condition, does not resolve until growth halts
- marjority non-operative
  - may restrict activities such as basketball or cycling
  - NSAIDs, rest, flexibility, isometric strengthening exercises
  - casting if symptoms do not resolve with conservative management
- operative: ossicle excision in refractory cases (patient is skeletally mature with persistent symptoms)

# **Congenital Talipes Equinovarus (Club Foot)**

- · congenital foot deformity
- muscle contractures resulting in CAVE deformity
- bony deformity: talar neck medial and plantar deviated; varus calcaneus and rotated medially around talus; navicular and cuboid medially displaced
- 1-2/1,000 newborns, 50% bilateral, occurrence M>F, severity F>M

### Etiology

- intrinsic causes (neurologic, muscular, or connective tissue diseases) vs. extrinsic (intrauterine growth restriction), may be idiopathic, neurogenic, or syndrome-associated
- fixed deformity

## **Physical Exam**

- examine hips for associated DDH
- examine knees for deformity
- examine back for dysraphism (unfused vertebral bodies)

### Treatment

- largely non-operative via Ponseti Technique (serial manipulation and casting)
  - correct deformities in CAVE order
    - change strapping/cast q1-2wk
    - surgical release in refractory case (rare)
  - delayed until 3-4 mo of age
- 3 yr recurrence rate = 5-10%
- mild recurrence common; affected foot is permanently smaller/stiffer than normal foot with calf muscle atrophy

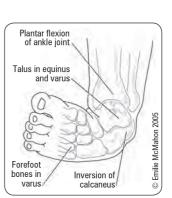



Figure 54. The club foot – depicting the gross and bony deformity



# CAVE deformity

- midfoot Cavus
- forefoot Adductus
  hindfoot Varus
- hindfoot Equinus

## Pediatric Orthopedics/Bone Tumours

### Toronto Notes 2016

# **Scoliosis**

- lateral curvature of spine with vertebral rotation
- age: 10-14 yr
- · more frequent and more severe in females

### Etiology

- idiopathic: most common (90%)
- congenital: vertebrae fail to form or segment
- neuromuscular: UMN or LMN lesion, myopathy
- postural: leg length discrepancy, muscle spasm
- other: osteochondrodystrophies, neoplastic, traumatic

## **Clinical Features**

- ± back pain
- primary curve where several vertebrae affected
- secondary curves above and below fixed 1° curve to try and maintain normal position of head and pelvis
- asymmetric shoulder height when bent forward
- Adam's test: rib hump when bent forward
- prominent scapulae, creased flank, asymmetric pelvis
- associated posterior midline skin lesions in neuromuscular scolioses
   café-au-lait spots, dimples, neurofibromas
  - axillary freckling, hemangiomas, hair patches
- associated pes cavus or leg atrophy
- apparent leg length discrepancy

## Investigations

- x-ray: 3-foot standing, AP, lateral
  - measure curvature: Cobb angle
  - may have associated kyphosis

## Treatment

- based on Cobb angle
  - <25°: observe for changes with serial radiographs</p>
  - >25° or progressive: bracing (many types) that halt/slow curve progression but do NOT reverse deformity
  - >45°, cosmetically unacceptable or respiratory problems: surgical correction (spinal fusion)

# Bone Tumours

- primary bone tumours are rare after 3<sup>rd</sup> decade
- metastases to bone are relatively common after 3<sup>rd</sup> decade

### **Clinical Features**

- malignant (primary or metastasis): local pain and swelling (wk mo), worse on exertion and at night,  $\pm$  soft tissue mass
- benign: usually asymptomatic
- minor trauma often initiating event that calls attention to lesion

### Table 24. Distinguishing Benign from Malignant Bone Lesions on X-Ray

| Benign                              | Malignant                                                                          |
|-------------------------------------|------------------------------------------------------------------------------------|
| No periosteal reaction              | Acute periosteal reaction<br>• Codman's triangle<br>• "Onion skin"<br>• "Sunburst" |
| Thick endosteal reaction            | Broad border between lesion and normal bone                                        |
| Well developed bone formation       | Varied bone formation                                                              |
| Intraosseous and even calcification | Extraosseous and irregular calcification                                           |

Adapted from: Buckholtz RW, Heckman JD. Rockwood and Green's Fractures in Adults. Volume 1. Philadephia: Lippincott Williams & Wilkins, 2001. p558

### Diagnosis

- routine x-ray findings
  - location (which bone, diaphysis, metaphysis, epiphysis)
  - size
  - lytic/lucent vs. sclerotic
  - involvement (cortex, medulla, soft tissue)



Scoliosis screening is not recommended in Canada (Grieg A, et al. 2010; Health Canada, 1994)



In structural or fixed scoliosis, bending forwards makes the curve more obvious



Postural scoliosis can be corrected by correcting the underlying problem

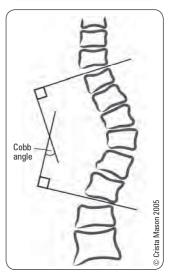



Figure 55. Cobb angle – used to monitor the progression of the scoliotic curve



# Red Flags

- Persistent skeletal pain
  Localized tenderness
- Spontaneous fracture
- Enlarging mass/soft tissue swelling

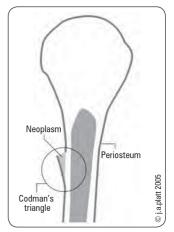



Figure 56. Codman's triangle – a radiographic finding in malignancy, where the partially ossified periosteum is lifted off the cortex by neoplastic tissue

### **OR47** Orthopedics

- matrix (radiolucent, radiodense or calcified)
- periosteal reaction
- margin (geographic vs. permeative)
- any pathological fracture
- soft tissue swelling
- malignancy is suggested by rapid growth, warmth, tenderness, lack of sharp definition
- staging should include
  - blood work including liver enzymes
  - CT chest
  - bone scan
  - bone biopsy
    - should be referred to specialized centre prior to biopsy
    - classified into benign, benign aggressive, and malignant
  - MRI of affected bone

# **Benign Active Bone Tumours**

# **BONE-FORMING TUMOURS**

### **Osteoid Osteoma**

- bone tumour arising from osteoblasts peak incidence in  $2^{nd}$  and  $3^{rd}$  decades, M:F = 2:1 (young males)
- proximal femur and tibia diaphysis most common locations
- not known to metastasize
- radiographic findings: small, round radiolucent nidus (<1.5 cm) surrounded by dense sclerotic bone ("bull's-eye")
- symptoms: produces severe intermittent pain from prostaglandin secretion and COX1/2 expression, mostly at night (diurnal prostaglandin production), thus is characteristically relieved by NSAIDs
- treatment: NSAIDs for night pain; surgical resection of nidus

## **FIBROUS LESIONS**

### **Fibrous Cortical Defect**

- · or non-ossifying fibroma; fibrous bone lesion
- most common benign bone tumour in children, typically asymptomatic and an incidental finding
- occur in as many as 35% of children, peak incidence between 2-25 yr old, higher prevalence in males
- femur and proximal tibia most common locations, 50% of patients have multiple defects usually bilateral, symmetrical
- radiographic findings: diagnostic, metaphyseal eccentric 'bubbly' lytic lesion near physis; thin smooth/lobulated well-defined sclerotic margin
- · treatment: most lesions resolve spontaneously

## Osteochondroma

- · cartilage capped bony tumour
- $2^{nd}$  and  $3^{rd}$  decades, M:F = 1.8:1
- most common of all benign bone tumours 45%
- 2 types: sessile (broad based and increased risk of malignant degeneration) vs. pedunculated (narrow stalk)
- metaphysis of long bone near tendon attachment sites (usually distal femur, proximal tibia, or proximal humerus)
- radiographic findings: cartilage-capped bony spur on surface of bone ("mushroom" on x-ray) • may be multiple (hereditary, autosomal dominant form) - higher risk of malignant change
- generally very slow growing and asymptomatic unless impinging on neurovascular structure ('painless mass')
  - growth usually ceases when skeletal maturity is reached
- malignant degeneration occurs in 1-2% (becomes painful or rapidly grows)
- treatment: typically observation; surgical excision if symptomatic

## Enchondroma

- hyaline cartilage tumour; majority asymptomatic, presenting as incidental finding or pathological fracture
- 2<sup>nd</sup> and 3<sup>rd</sup> decades
- 60% occur in the small tubular bones of the hand and foot; others in femur (20%), humerus, ribs



Figure 57. T1 MRI of femoral enchondroma

### **OR48** Orthopedics

### **Bone Tumours**

- benign cartilagenous growth, an abnormality of chondroblasts, develops in medullary cavity
   single/multiple enlarged rarefied areas in tubular bones
  - lytic lesion with sharp margination and irregular central calcification (stippled/punctate/ popcorn appearance)
- malignant degeneration to chondrosarcoma occurs in 1-2% (pain in absence of pathologic fracture is an important clue)
- not known to metastasize
- treatment: observation with serial x-rays; surgical curettage if symptomatic or lesion grows

## **CYSTIC LESIONS**

### **Unicameral/Solitary Bone Cyst**

- most common cystic lesion; serous fluid filled lesion
- children and young adults, peak incidence during first 2 decades, M:F = 2:1
- proximal humerus and femur most common
- symptoms: asymptomatic, or local pain; complete pathological fracture (50% presentations) or incidental detection
- radiographic findings: lytic translucent area on metaphyseal side of growth plate, cortex thinned/expanded; well defined lesion
- treatment: aspiration followed by steroid injection; curettage ± bone graft indicated if re-fracture likely

# **Benign Aggressive Bone Tumours**

## Giant Cell Tumours/Aneurysmal Bone Cyst/Osteoblastoma

- affects patients of skeletal maturity, peak 3rd decade
- osteoblastoma: found in the distal femur, proximal tibia, distal radius, sacrum, tarsal bones, spine
- giant cell tumour: pulmonary metastases in 3%
- aneurysmal bone cysts: either solid with fibrous/granular tissue, or blood-filled
- radiographic findings
  - giant cell tumour: eccentric lytic lesions, in epiphyses adjacent to subchondral bone; may break through cortex; T2 MRI enhances fluid within lesion (hyper-intense signal)
  - aneurysmal bone cyst: expanded with honeycomb shape
  - osteoblastoma: often nonspecific; calcified central nidus (>2 cm) with radiolucent halo and sclerosis
- symptoms: local tenderness and swelling, pain may be progressive (giant cell tumours),
- ± symptoms of nerve root compression (osteoblastoma)
- 15% recur within 2 yr of surgery

### Treatment

- intralesional curettage + bone graft or cement
- wide local excision of expendable bones

# **Malignant Bone Tumours**

### Table 25. Most Common Malignant Tumour Types for Age

| <ul> <li>&lt;1 Neuroblastoma</li> <li>1-10 Ewing's of tubular bones</li> <li>10-30 Osteosarcoma, Ewing's of flat bones</li> <li>30-40 Reticulum cell sarcoma, fibrosarcoma, periosteal osteosarcoma, malignant giant cell tumour, lymphoma</li> </ul> | Age   | Tumour                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------|
| 10-30 Osteosarcoma, Ewing's of flat bones                                                                                                                                                                                                             | <1    | Neuroblastoma                                                                                        |
|                                                                                                                                                                                                                                                       | 1-10  | Ewing's of tubular bones                                                                             |
| 30-40 Reticulum cell sarcoma, fibrosarcoma, periosteal osteosarcoma, malignant giant cell tumour, lymphoma                                                                                                                                            | 10-30 | Osteosarcoma, Ewing's of flat bones                                                                  |
|                                                                                                                                                                                                                                                       | 30-40 | Reticulum cell sarcoma, fibrosarcoma, periosteal osteosarcoma, malignant giant cell tumour, lymphoma |
| >40 Metastatic carcinoma, multiple myeloma, chondrosarcoma                                                                                                                                                                                            | >40   | Metastatic carcinoma, multiple myeloma, chondrosarcoma                                               |

### Osteosarcoma

malignant bone tumour

- most frequently diagnosed in 2nd decade of life (60%), 2nd most common primary malignancy in adults
- · history of Paget's disease (elderly patients), previous radiation treatment
- predilection for sites of rapid growth: distal femur (45%), proximal tibia (20%), and proximal humerus (15%)
- invasive, variable histology; frequent metastases without treatment (lung most common)
- painful symptoms: progressive pain, night pain, poorly defined swelling, decreased ROM
  radiographic findings
  - characteristic periosteal reaction: Codman's triangle (see Figure 56) or "sunburst" spicule formation (tumour extension into periosteum)
  - destructive lesion in metaphysis may cross epiphyseal plate



Figure 58. X-ray of aneurysmal bone cyst. Note the aggressive destruction of bone



Figure 59. X-ray of osteosarcoma of distal femur

## Toronto Notes 2016

### **OR49** Orthopedics

### **Bone Tumours**

## Toronto Notes 2016

- management: complete resection (limb salvage, rarely amputation), neo-adjuvant chemo; bone scan rule out skeletal metastases, CT chest rule out pulmonary metastases
- prognosis: 70% (high-grade); 90% (low-grade)

## Chondrosarcoma

- malignant chondrogenic tumour
- primary (2/3 cases)
  - previous normal bone, patient >40 yr; expands into cortex to give pain, pathological fracture, flecks of calcification
- secondary (1/3 cases)
  - malignant degeneration of pre-existing cartilage tumour such as enchondroma or osteochondroma
  - age range 25-45 yr and better prognosis than primary chondrosarcoma
- symptoms: progressive pain, uncommonly palpable mass
- radiographic findings: in medullary cavity, irregular "popcorn" calcification
- treatment: unresponsive to chemotherapy, treat with aggressive surgical resection + reconstruction; regular follow-up x-rays of resection site and chest
- prognosis: 10-yr survival 90% low-grade, 20-40% high-grade

### **Ewing's Sarcoma**

- malignant small round cell sarcoma
- most occur between 5-25 yr old
- florid periosteal reaction in metaphyses of long bone with diaphyseal extension
- metastases frequent without treatment
- signs/symptoms: presents with pain, mild fever, erythema and swelling, anemia, increased WBC, ESR, LDH (mimics an infection)
- radiographic findings: moth-eaten appearance with periosteal lamellated pattern ("onionskinning")
- treatment: resection, chemotherapy, radiation
- prognosis 70%, worst prognostic factor is distant metastases

## **Multiple Myeloma**

- proliferation of neoplastic plasma cells
- most common primary malignant tumour of bone in adults (~43%)
- 90% occur in people >40 yr old, M:F = 2:1, African-Americans (twice as common)
- signs/symptoms: localized bone pain (cardinal early symptom), compression/pathological fractures, renal failure, nephritis, high incidence of infections (e.g. pyelonephritis/pneumonia), systemic (weakness, weight loss, anorexia)
- · labs: anemia, thrombocytopenia, increased ESR, hypercalcemia, increased Cr
- radiograpic findings: multiple, "punched-out" well-demarcated lesions, no surrounding sclerosis, marked bone expansion
- diagnosis
  - serum/urine immunoelectrophoresis (monoclonal gammopathy)
  - CT-guided biopsy of lytic lesions at multiple bony sites
- treatment: chemotherapy, bisphosphonates, radiation, surgery for symptomatic lesions or impending fractures – debulking, internal fixation
- prognosis: 5 yr survival 30%; 10 yr survival 11%
- see Hematology, H49

### **Bone Metastases**

- most common cause of bone lesions in adults; typically age >40
- 2/3 from breast or prostate; also consider thyroid, lung, kidney
- usually osteolytic; prostate occasionally osteoblastic
- may present with mechanical pain and/or night pain, pathological fracture, hypercalcemia
- bone scan for MSK involvement, MRI for spinal involvement may be helpful
- treatment: pain control, bisphosphonates, stabilization of impending fractures if Mirel's Critera >8 (ORIF, IM rod, bone cement)

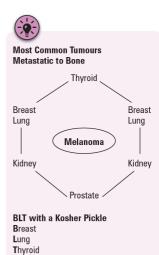
### Table 26. Mirel's Criteria for Impending Fracture Risk and Prophylactic Internal Fixation

| Variable | Number Assigned     |                  |                  |
|----------|---------------------|------------------|------------------|
|          | 1                   | 2                | 3                |
| Site     | Upper arm           | Lower extremity  | Peritrochanteric |
| Pain     | Mild                | Moderate         | Severe           |
| Lesion   | Blastic             | Mixed            | Lytic            |
| Size     | < 1/3 bone diameter | 1/3-2/3 diameter | >2/3 diameter    |



Figure 60. X-ray of femoral chondrosarcoma




Signs of Hypercalcemia "Bones, Stones, Moans, Groans, Psychiatric overtones" CNS: headache, confusion, irritability, blurred vision

GI: N/V, abdominal pain, constipation,

weight loss

MSK: fatigue, weakness, unsteady gait, bone and joint pain

GU: nocturia, polydipsia, polyuria, UTIs



Kidney Prostate

iU: nocturia

# **Common Medications**

# Table 27. Common Medications

| Drug Name                                                                          | Dosing Schedule                                                   | Indications                                                                           | Comments                                                                                                              |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| cefazolin (Ancef $^{\ensuremath{\mathbb{R}}}$ )                                    | 1-2 g IV q8h                                                      | Prophylactically before<br>orthopedic surgery                                         | First generation cephalosporin;<br>do not use with penicillin allergy                                                 |
| heparin                                                                            | 5000 IU SC q12h                                                   | To prevent venous thombosis and pulmonary emboli                                      | Monitor platelets, follow PTT which should rise 1.5-2x                                                                |
| LMWH                                                                               |                                                                   |                                                                                       |                                                                                                                       |
| dalteparin (Fragmin®)<br>enoxaparin (Lovenox®)<br>fondaparinux (Arixtra®)          | 5000 IU SC 0D<br>30-40 mg SC bid<br>2.5 mg SC 0D                  | DVT prophylaxis especially in hip and knee surgery                                    | Fixed dose, no monitoring,<br>improved bioavailability,<br>increased bleeding rates                                   |
| oral anticoagulants<br>dabigatran (Pradaxa®)<br>rivaroxaban (Xarelto®)<br>apixaban | 110 mg PO x1 then 220<br>mg PO 0D<br>10 mg PO 0D<br>2.5 mg PO bid | DVT prophylaxis especially ⊺KA<br>and THA                                             | Predictable, no monitoring, oral administration; no antidote                                                          |
| midazolam (Versed®)                                                                | 0.02-0.04 mg/kg IV                                                | Conscious sedation for short procedures                                               | Medication used during<br>fracture reduction – monitor for<br>respiratory depression                                  |
| fentanyl (Sublimaze®)                                                              | 0.5-3 μg/kg IV                                                    | Conscious sedation for short<br>procedures                                            | Short acting anesthetic used<br>in conjunction with midazolam<br>(Versed®)                                            |
| triamcinolone (Aristocort <sup>®</sup> ) –<br>an injectable steroid                | 0.5-1 mL of 25 mg/mL                                              | Suspension (injected into<br>inflamed joint or bursa); amount<br>varies by joint size | Potent anti-inflammatory effect;<br>increased pain for 24 h, rarely<br>causes fat necrosis and skin<br>depigmentation |
| naproxen (Aleve <sup>®</sup> ,<br>Naprosyn <sup>®</sup> )                          | 250-500 mg bid                                                    | Pain due to inflammation, arthritis, soft tissue injury                               | NSAID, may cause gastric<br>erosion and bleeding                                                                      |
| misoprostol (Cytotec®)                                                             | 200 µg qid                                                        | Prophylaxis of HO after THA                                                           | Use with indomethacin                                                                                                 |
| indomethacin (Indocid®)                                                            | 25 mg PO tid                                                      | Prophylaxis of HO after THA                                                           | Use with misoprostol                                                                                                  |
| ibuprofen (Advil <sup>®</sup> , Motrin <sup>®</sup> )                              | 200-400 mg tid                                                    | Pain (including post-operative),<br>inflammation (including arthritis)                | NSAID, may cause gastric<br>erosion and bleeding                                                                      |
| propofol (Diprivan®)                                                               | 1-2 mg/kg IV<br>maintenance 0.5 mg/kg                             | Conscious sedation for short procedures                                               | Short acting anesthetic often used in conjunction with fentanyl (Sublimaze®)                                          |

# References

AAOS. The treatment of distal radius fractures: summary of recommendations. 2009. Available from: http://www.aaos.org/research/guidelines/DRFguideline.asp. Adams JC, Hamblen DL. Outline of fractures: including joint injuries, 11th ed. Toronto: Churchill Livingstone, 1999. Adkins SB. Hip pain in athletes. Am Fam Phys 2000;61:2109-2118. Armagan OE, Shereff MJ. Injuries of the toes and metatarsals. Orthop Clin North Am 2001;32:1-10. Barei DP, Bellabarba C, Sangeorzan BJ, et al. Fractures of the calcaneus. Orthop Clin North Am 2001;33:263-285. Barrett SL. Plantar fasciitis and other causes of heel pain. Am Fam Phys 1999;59:2200-2206. Blackbourne LH (editor). Surgical recall, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2002. Brand DA, Frazier WH, Kohlhepp WC, et al. A protocol for selecting patients with injured extremities who need x-rays. NEJM 1982;306:833-839. Brinker MR. Review of orthopedic trauma. Toronto: WB Saunders, 2001. Brinker M, Miller M. Fundamentals of orthopedics. Philadelphia: WB Saunders, 1999. Canadian CT Head and C-Spine (CCC) Study Group. Canadian c-spine rule study for alert and stable trauma patients: background and rationale. CJEM 2002;4:84-90. Canale ST, Beaty JH. Campbell's operative orthopaedics, 12th ed. Philadelphia: Elsevier Mosby, 2013. Carek PJ. Diagnosis and management of osteomyelitis. Am Fam Phys 2001;63:2413-2420. Dee R, Hurst LC, Gruber MA, et al. (editors). Principles of orthopedic practice, 2nd ed. Toronto: McGraw-Hill, 1997. Donatto KC. Ankle fractures and syndesmosis injuries. Orthop Clin North Am 2001;32:79-90. Duane TM, Wilson SP, Mayglothling J, et al. Canadian cervical spine rule compared with computed tomography: a prospective analysis. J Trauma 2011;71:352-355. Fernandez M. Discitis and vertebral osteomyelitis in children: an 18-year review. Pediatrics 2000;105:1299-1304 Flyn JM. Orthopaedic Knowledge Update 10. Rosemont IL: American Academy of Orthopaedic Surgeons, 2011. Fortin PT. Talus fractures: evaluation and treatment. J Am Acad Orthop Surg 2001;9:114-127. French B, Tornetta III P. High energy tibial shaft fractures. Orthop Clin North Am 2002;33:211-230. Gable H, Nunn D. Image Interpretation Course. 2009. Available from: http://www.imageinterpretation.co.uk. Geerts WH, Heit JA, Clagett GP, et al. Prevention of venous thromboembolism. Chest 2001;119(1 Suppl):132S-175S. Goldbloom RB. Screening for idiopathic adolescent scoliosis. Ottawa: Health Canada. Canadian Task Force on the Periodic Health Examination, Canadian Guide to Clinical Preventive Health Care, 1994. 346-353. Gosselin RA, Roberts I, Gillespie WJ. Antibiotics for preventing infection in open limb fractures. Cochrane DB Syst Rev. 2004; 1: CD003764 Greig A, Constantin E, Carsley S, et al. Preventive health care visits for children and adolescents aged six to 17 years: the Greig health record – executive summary. Ped Child Health 2010;15:157-159. Grover R. Clinical assessment of scaphoid injuries and the detection of fractures. J Hand Surg Br 1996;21:341-343. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 1984;24:742-746. Hamilton H, McIntosh G, Boyle C. Effectiveness of a low back classification system. Spine J 2009;9:648-657. Harty MP. Imaging of pediatric foot disorders. Radiol Clin North Am 2001;39:733-748. Hermans J, Luime JL, Meuffels DE, et al. Does this patient with shoulder pain have rotator cuff disease? The rational clinical examination systematic review. JAMA 2013;310:837-847. Irrgang JJ. Rehabilitation of multiple ligament injured knee. Clin Sports Med 2000;19:545-571. Kao LD. Pre-test surgery. Toronto: McGraw-Hill, 2002. Karachalios T, Hantes M, Zibis AH, et al. Diagnostic accuracy of a new clinical test (the Thessaly test) for early detection of meniscal tears. J Bone Joint Surg Am 2005;87:955-962. Lawrence LL. The limping child. Emerg Med Clin North Am 1998;169:911-929. Litaker D, Pioro M, El Bilbeisi H, et al. Returning to the bedside: using the history and physical examination to identify rotator cuff tears. J Am Geriat Soc 2000;48:1633-1637. Lo IK, Nonweiler B, Woolfrey M, et al. An evaluation of the apprehension, relocation, and surprise tests for anterior shoulder instability. American Journal of Sports Medicine 2004;32:301-7. Magee DJ. Orthopedic physical assessment, 5th ed. St. Louis: WB Saunders Elsevier, 2008. Margaretten ME, Kohlwes J, Moore D, et al. Does this adult patient have septic arthritis? JAMA 2007;297:1478-1488. Mathews CJ, Coakley G. Septic arthritis: current diagnostic and therapeutic algorithm. Curr Opin Rheumatol 2008;20:457-462. Mazzone MF. Common conditions of the Achilles tendon. Am Fam Phys 2000;65:1805-1810. Miller MD, Thompson SR, Hart J. Review of Orthopaedics, 6th ed. Philadelphia: Elsevier, 2012. Miller SL. Malignant and benign bone tumours. Radiol Clin North Am 2000;39:673-699 Murrell GA, Walton JR. Diagnosis of rotator cuff tears. Lancet 2001;357:769-770. Ochiai DH. The orthopedic intern pocket survival guide. McLean: International Medical Publishing, 2007. Okike K, Bhattacharyya T. Trends in the management of open fractures: a critical analysis. J Bone Joint Surg Am 2006;88:2739-2748. Oudjhane K. Imaging of osteomyelitis in children. Radiol Clin North Am 2001;39:251-266 Patel DR. Sports injuries in adolescents. Med Clin North Am 2000;84:983-1007. Roberts DM, Stallard TC. Emergency department evaluation and treatment of knee and leg injuries. Emerg Med Clin North Am 2000;18:67-84. Rockwood CA, Williams GR, Young DC, Disorders of the acromioclavicular joint. Rockwood CA, Masten FA II (editors). The shoulder. Philadelphia: Saunders, 1998, 483-553. Rockwood CA Jr, Greene DP, Bucholz RU, et al. (editors). Rockwood and Green's fractures in adults, 4th ed. Philadelphia: Lippincott Raven, 1996. Russell GV Jr. Complicated femoral shaft fractures. Orthop Clin North Am 2002;33:127-142. Ryan SP, Pugliano V. Controversies in initial management of open fractures. Scan J Surg 2014;103(2):132-7. Skinner HB. Current diagnosis and treatment in orthopedics, 4th ed. New York: McGraw-Hill, 2006. Solomon DH, Simel DL, Bates DW, et al. The rational clinical examination: does this patient have a torn meniscus or ligament of the knee? Value of the physical examination. JAMA 2001;286:1610-1620. Solomon L, Warwick DJ, Nayagam S. Apley's system of orthopedics and fractures, 8th ed. New York: Hodder Arnold, 2001. St Pierre P. Posterior cruciate ligament injuries. Clin Sports Med 1999;18:199-221. Steele PM, Bush-Joseph C, Bach Jr B. Management of acute fractures around the knee, ankle, and foot. Clin Fam Pract 2000;2:661-705. Stewart DG Jr, Kay RM, Skaggs DL. Open fractures in children. Principles of evaluation and management. JBJS Am 2005;87:2784-2798. Swenson TM. The dislocated knee: physical diagnosis of the multiple-ligament-injured knee. Clin Sports Med 2000;19:415-423. Testroote M, Stigter WA, Janssen L, et al. Low molecular weight heparin for prevention of venous thromboembolism in patients with lower-leg immobilization. Cochrane DB Syst Rev 2014;4:CD006681. Thompson JC. Netter's concise atlas of orthopedic Anatomy. USA: Elsevier, 2001. Wong M. Pocket or thopedics: evidence-based survival guide. Sudbury: Jones and Bartlett Publishers, 2010. Zhang Y. Clinical Epidemiology of Orthopedic Trauma. New York: Thieme Medical Publishers, 2012. Zollinger PE, Tuinebreijer WE, Kreis RW, et al. Effect of vitamin C on frequency of reflex sympathetic dystrophy in wrist fractures: a randomized trial. Lancet 1999;354:2025-2058.